Composition and microstructure optimization and operation stability of barium deficient Ba1-xCo0.7Fe0.2Nb0.1O3-delta perovskite oxide electrodes
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Ba1-xCo0.7Fe0.2Nb0.1O3-delta oxides (x = 0, 0.05 and 0.10) were optimized as potential cathodes on oxygen ionic conductor electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). The creation of additional oxygen vacancies in Ba0.9Co0.7Fe0.2Nb0.1O3-delta was confirmed. Low polarization resistances of 0.015, 0.029 and 0.089 Ohm cm2 were achieved at 700, 650 and 600 degrees Celcius, respectively. By further optimizing the microstructure of the Ba0.9Co0.7Fe0.2Nb0.1O3-delta electrode by using polyvinyl butyral as a pore former and adjusting the sintering temperature, the maximum power density was improved from 682 to 955 mW cm-2 at 650 degrees Celcius. The operational stability of the Ba0.9Co0.7Fe0.2Nb0.1O3-delta electrode was also investigated. The CO2 in the surrounding air was detrimental to the oxygen reduction reaction; however, the performance of the cell was recovered after removing the CO2 in the air at 650 or 700 degrees Celcius. In addition, the Ba0.9Co0.7Fe0.2Nb0.1O3-delta electrode in symmetrical cells exhibited a stable performance at 650 degrees Celcius for 400 h and maintained a reliable performance after repeated thermal cycles from room temperature to 700degrees Celcius. The results showed that Ba0.9Co0.7Fe0.2Nb0.1O3-delta was a promising cathode material for practicalapplication in IT-SOFCs.
Related items
Showing items related by title, author, creator and subject.
-
Xu, Shanshan; Li, Shisong; Yao, Weitang; Dong, Dehua; Xie, Kui (2013)Composite fuel electrode based on redox-reversible La0.75Sr0.25Cr0.5Mn0.5O3 -delta (LSCM) can be operated without a flow of reducing gas. We demonstrate the efficient electrolysis of CO2 using a symmetric solid oxide ...
-
Chen, D.; Yang, G.; Shao, Zongping; Ciucci, F. (2013)A dense and crack-free nanoscaled Sm-doped CeO2 (SDC) thin film as a buffer layer for intermediate-temperature solid oxide fuel cells has been successfully deposited onto the polycrystalline yttria-stabilized zirconia ...
-
Chen, D.; Yang, G.; Ciucci, F.; Tade, Moses; Shao, Zongping (2014)Solid oxide fuel cells (SOFCs) as alternatives for energy conversion have the capacity to overcome low energy conversion efficiency, highly detrimental emissions from traditional fuel utilization and the limited reserves ...