Composition and microstructure optimization and operation stability of barium deficient Ba1-xCo0.7Fe0.2Nb0.1O3-delta perovskite oxide electrodes
dc.contributor.author | Wang, F. | |
dc.contributor.author | Chen, D. | |
dc.contributor.author | Shao, Zongping | |
dc.date.accessioned | 2017-01-30T14:02:28Z | |
dc.date.available | 2017-01-30T14:02:28Z | |
dc.date.created | 2014-10-08T01:14:47Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Wang, F. and Chen, D. and Shao, Z. 2013. Composition and microstructure optimization and operation stability of barium deficient Ba1-xCo0.7Fe0.2Nb0.1O3-delta perovskite oxide electrodes. Electrochimica Acta. 103: pp. 23-31. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/37395 | |
dc.description.abstract |
Ba1-xCo0.7Fe0.2Nb0.1O3-delta oxides (x = 0, 0.05 and 0.10) were optimized as potential cathodes on oxygen ionic conductor electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). The creation of additional oxygen vacancies in Ba0.9Co0.7Fe0.2Nb0.1O3-delta was confirmed. Low polarization resistances of 0.015, 0.029 and 0.089 Ohm cm2 were achieved at 700, 650 and 600 degrees Celcius, respectively. By further optimizing the microstructure of the Ba0.9Co0.7Fe0.2Nb0.1O3-delta electrode by using polyvinyl butyral as a pore former and adjusting the sintering temperature, the maximum power density was improved from 682 to 955 mW cm-2 at 650 degrees Celcius. The operational stability of the Ba0.9Co0.7Fe0.2Nb0.1O3-delta electrode was also investigated. The CO2 in the surrounding air was detrimental to the oxygen reduction reaction; however, the performance of the cell was recovered after removing the CO2 in the air at 650 or 700 degrees Celcius. In addition, the Ba0.9Co0.7Fe0.2Nb0.1O3-delta electrode in symmetrical cells exhibited a stable performance at 650 degrees Celcius for 400 h and maintained a reliable performance after repeated thermal cycles from room temperature to 700degrees Celcius. The results showed that Ba0.9Co0.7Fe0.2Nb0.1O3-delta was a promising cathode material for practicalapplication in IT-SOFCs. | |
dc.publisher | Pergamon | |
dc.subject | cells | |
dc.subject | Intermediate-temperature solid oxide fuel | |
dc.subject | Operational stability | |
dc.subject | Carbon dioxide | |
dc.subject | Microstructure | |
dc.subject | Deficiency | |
dc.title | Composition and microstructure optimization and operation stability of barium deficient Ba1-xCo0.7Fe0.2Nb0.1O3-delta perovskite oxide electrodes | |
dc.type | Journal Article | |
dcterms.source.volume | 103 | |
dcterms.source.startPage | 23 | |
dcterms.source.endPage | 31 | |
dcterms.source.issn | 0013-4686 | |
dcterms.source.title | Electrochimica Acta | |
curtin.accessStatus | Fulltext not available |