Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The effect of interfacial slip on the dynamics of a drop in flow: Part I. Stretching, relaxation, and breakup

    Access Status
    Fulltext not available
    Authors
    Ramachandran, A.
    Tsigklifis, Konstantinos
    Roy, A.
    Leal, G.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ramachandran, A. and Tsigklifis, K. and Roy, A. and Leal, G. 2012. The effect of interfacial slip on the dynamics of a drop in flow: Part I. Stretching, relaxation, and breakup. Journal of Rheology. 56 (1): pp. 45-97.
    Source Title
    Journal of Rheology
    DOI
    10.1122/1.3663379
    ISSN
    0148-6055
    School
    Department of Mechanical Engineering
    URI
    http://hdl.handle.net/20.500.11937/3783
    Collection
    • Curtin Research Publications
    Abstract

    Using a numerical method based on the boundary-integral technique, we assess the impact of interfacial slip on the dynamics of deformation and breakup of a single drop subjected to a uniaxial extensional flow under creeping-flow conditions. Interfacial slip is incorporated in our continuum development as a jump in the tangential velocity across the interface. This velocity jump is shown to reduce to the Navier-slip boundary condition to leading order and is characterized by a dimensionless slip coefficient a = (d I /µ I) (µ / R), where d I is thickness of the diffuse interface between the liquids, I is the viscosity of the interfacial region, is the viscosity of the suspending fluid, and R is the drop radius. A key contribution of this paper is the development of a stable, boundary-integral formulation to incorporate interfacial slip into existing, no-slip boundary-integral frameworks for drop deformation. Slip has a fourfold impact on the drop stretching, relaxation, and breakup phenomena. First, when the capillary number is small, the steady deformation of the drop with slip is smaller than the no-slip result, and the difference increases with the viscosity ratio and the capillary number. Slip thus leads to larger critical capillary numbers beyond which the drop stretches continuously in the extensional flow. Second, for capillary numbers greater than the critical value, we find that the shape of the deformed drop for the same drop elongation is relatively insensitive to the slip coefficient, but the time required to reach this deformation is a strong function of the slip coefficient-slip slows down the deformation process. Third, the end-pinch mechanism of drop breakup leads to a different number and sizes of droplets with the inclusion of slip. Finally, slip causes the capillary-instability mechanism of drop breakup to produce larger drops at faster rates relative to the no-slip case. In addition to the above results, we also show that slip moderates the viscosity and normal stress differences in a sheared, dilute emulsion. Our study has important implications in the area of blending of immiscible polymers and indicates that the drop size distribution, which ultimately governs the material properties of the blend and composites prepared from it, is influenced strongly by interfacial slip. © 2012 The Society of Rheology.

    Related items

    Showing items related by title, author, creator and subject.

    • Properties and solution techniques for a mixed type boundary integral equation arising in creeping flow problems
      Ramachandran, A.; Tsigklifis, Konstantinos; Leal, L. (2012)
      We consider the properties of a creeping flow, boundary integral operator which is the sum of a single layer potential arising from a surface density, and two double layer potentials, one each for the tangential and normal ...
    • Enhanced gas condensate recovery by CO2 injection
      Al-Abri, Abdullah S. (2011)
      Perhaps no other single theme offers such potential for the petroleum industry and yet is never fully embraced as enhanced hydrocarbon recovery. Thomas et al. (2009, p. 1) concluded their review article with “it appears ...
    • Multiphase Transient Flow in Pipes
      Ben Mahmud, Hisham (2012)
      The development of oil and gas fields in offshore deep waters (more than 1000 m) will become more common in the future. Inevitably, production systems will operate under multiphase flow conditions. The two–phase flow of ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.