Multicompartmental, multilayered probucol microcapsules for diabetes mellitus: Formulation characterization and effects on production of insulin and inflammation in a pancreatic ß-cell line
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
School
Collection
Abstract
CONTEXT: We have shown that the primary bile acid, cholic acid (CA), has anti-diabetic effects in vivo. Probucol (PB) is a lipophilic drug with potential applications in type 2 diabetes (T2D). OBJECTIVE: This study aimed to encapsulate CA with PB and examine the formulation and surface characteristics of the microcapsules. We also tested the microcapsules' biological effects on pancreatic ß-cells. METHODS: Using the polymer, sodium alginate (SA), two formulations were prepared: PB-SA (control), and PB-CA-SA (test). Complete characterizations of the morphology, shape, size, chemical, thermal, and rheological properties, swelling and mechanical strength, cross-sectional imaging (Micro CT), stability, Zeta-potential, drug contents, and PB release profile were carried out, at different temperature and pH values. The microcapsules were applied to a NIT-1 cell culture and the supernatant was analyzed for insulin and TNF-a concentrations. RESULTS: CA incorporation optimized the PB microcapsules, which exhibited pseudoplastic-thixotropic rheological characteristics. The size of the microcapsules remained similar after CA addition, and the microcapsules showed even drug distribution and no chemical alterations of the excipients. Micro-CT imaging, differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy showed consistent microcapsules with uniform shape and morphology. PB-CA-SA microcapsules enhanced NIT-1 cell viability under hyperglycemic states and resulted in improved insulin release as well as reduced cytokine production at the physiological glucose levels. CONCLUSIONS: The addition of the primary bile acid, CA, improved the physical properties of the microcapsules and enhanced their pharmacological activity in vitro, suggesting potential applications in diabetes treatment.
Related items
Showing items related by title, author, creator and subject.
-
Mathavan, Sangeetha; Chen-Tan, N.; Arfuso, Frank; Al-Salami, Hani (2015)Context: Gliclazide (G) is a commonly prescribed drug for Type 2 diabetes (T2D). In a recent study, we found that when G was combined with a primary bile acid, and gavaged to an animal model of Type 1 diabetes (T1D), it ...
-
Mathavan, S.; Chen-Tan, N.; Arfuso, Frank; Al-Salami, Hani (2018)© 2018, American Association of Pharmaceutical Scientists. When we administered orally a mixture of the anti-diabetic drug, gliclazide (G) and a primary bile acid, they exerted a hypoglycemic effect in a rat model of type ...
-
Mooranian, A.; Negrulj, R.; Arfuso, Frank; Al-Salami, Hani (2015)In recent studies, we designed multi-compartmental microcapsules as a platform for the targeted oral delivery of lipophilic drugs in an animal model of type 2 diabetes (T2D). Probucol (PB) is a highly lipophilic, ...