A comprehensive study of novel microcapsules incorporating gliclazide and a permeation enhancing bile acid: hypoglycemic effect in an animal model of Type-1 diabetes
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Context: Gliclazide (G) is a commonly prescribed drug for Type 2 diabetes (T2D). In a recent study, we found that when G was combined with a primary bile acid, and gavaged to an animal model of Type 1 diabetes (T1D), it exerted a hypoglycemic effect. We hypothesized this to be due to metabolic activation of the primary bile acid into a secondary or a tertiary bile acid, which enhanced G solubility and absorption. The tertiary bile acid, taurocholic acid (TCA), has shown strong permeation-enhancing effects in vivo. Thus, we aimed to design, characterize, and test microcapsules incorporating G and TCA in an animal model of T1D. Methods: Microcapsules were prepared using the polymer sodium alginate (SA). G-SA microcapsules (control) and G–TCA–SA microcapsules (test) were extensively examined (in-vitro) at different pH and temperatures. The microcapsules were gavaged to diabetic rats, and blood glucose and G concentrations in serum were examined. Ex-vivo studies were also performed using a muscle cell line (C2C12), and cell viability and glucose intake post-treatment were examined. Results: G–TCA–SA microcapsules showed good stability, uniformity, and thermal and chemical excipient compatibilities. TCA did not change the size or the shape of the microcapsules, but it enhanced their mechanical resistance and reduced their swelling properties. G–TCA–SA enhanced the viability of C2C12 cells over 24 hours, and exerted a hypoglycemic effect in alloxan-induced type-1 diabetic rats. Conclusions: The incorporation of TCA into G-microcapsules resulted in functionally improved microcapsules with a positive effect on cell viability and glycemic control in Type-1 diabetic animals.
Related items
Showing items related by title, author, creator and subject.
-
Mooranian, A.; Negrulj, R.; Arfuso, Frank; Al-Salami, Hani (2015)In recent studies, we designed multi-compartmental microcapsules as a platform for the targeted oral delivery of lipophilic drugs in an animal model of type 2 diabetes (T2D). Probucol (PB) is a highly lipophilic, ...
-
Mathavan, S.; Chen-Tan, N.; Arfuso, Frank; Al-Salami, Hani (2018)© 2018, American Association of Pharmaceutical Scientists. When we administered orally a mixture of the anti-diabetic drug, gliclazide (G) and a primary bile acid, they exerted a hypoglycemic effect in a rat model of type ...
-
Mooranian, A.; Negrulj, R.; Arfuso, Frank; Al-Salami, H. (2015)CONTEXT: We have shown that the primary bile acid, cholic acid (CA), has anti-diabetic effects in vivo. Probucol (PB) is a lipophilic drug with potential applications in type 2 diabetes (T2D). OBJECTIVE: This study aimed ...