Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Channel Estimation of Dual-Hop MIMO Relay Systems via Parallel Factor Analysis

    186260_186260.pdf (282.8Kb)
    Access Status
    Open access
    Authors
    Rong, Yue
    Khandaker, Muhammad
    Xiang, Y.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Rong, Yue and Khandaker, Muhammad and Xiang, Yong. 2012. Channel Estimation of Dual-Hop MIMO Relay Systems via Parallel Factor Analysis. IEEE Transactions on Wireless Communications. 11 (6): pp. 2224-2233.
    Source Title
    IEEE Transactions on Wireless Communications
    DOI
    10.1109/TWC.2012.032712.111251
    ISSN
    15361276
    Remarks

    Copyright © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

    URI
    http://hdl.handle.net/20.500.11937/38261
    Collection
    • Curtin Research Publications
    Abstract

    The optimal source precoding matrix and relay amplifying matrix have been developed in recent works on multipleinput multiple-output (MIMO) relay communication systems assuming that the instantaneous channel state information (CSI) is available. However, in practical relay communication systems, the instantaneous CSI is unknown, and therefore, has to be estimated at the destination node. In this paper, we develop a novel channel estimation algorithm for two-hop MIMO relay systems using the parallel factor (PARAFAC) analysis. The proposed algorithm provides the destination node with full knowledge of all channel matrices involved in the communication. Compared with existingapproaches, the proposed algorithm requires less number of training data blocks, yields smaller channel estimation error, and is applicable for both one-way and two-way MIMO relay systems with single or multiple relay nodes. Numerical examples demonstrate the effectiveness of the PARAFAC-based channel estimation algorithm.

    Related items

    Showing items related by title, author, creator and subject.

    • Signal processing algorithms for multiuser MIMO relay communication systems
      Khandaker, Muhammad Ruhul Amin (2012)
      The increasing demand for mobile applications such as streaming media, software updates, and location-based services involving group communications has prompted the need for wireless communication technologies that can ...
    • Channel training algorithms for two-way MIMO relay systems
      Chiong, Choo; Rong, Yue; Xiang, Y. (2013)
      Two-way relay systems are known to be capable of providing higher spectral efficiency compared with conventional one-way relay systems. However, the channel estimation problem for two-way relay systems is more complicated ...
    • Channel Estimation for Time-Varying MIMO Relay Systems
      Chiong, Choo Wee Raymond; Rong, Yue; Xiang, Y. (2015)
      In this paper, we investigate the channel estimation problem for multiple-input multiple-output (MIMO) relay communication systems with time-varying channels. The time-varying characteristic of the channels is described ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.