Show simple item record

dc.contributor.authorDo, Khac Duc
dc.contributor.authorPan, J.
dc.date.accessioned2017-01-30T14:23:12Z
dc.date.available2017-01-30T14:23:12Z
dc.date.created2015-10-29T04:09:27Z
dc.date.issued2015
dc.identifier.citationDo, K.D. and Pan, J. 2015. Optimal sensor and actuator locations in linear distributed parameter systems. Applied Mathematical Sciences. 9 (17): pp. 803-820.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/38569
dc.identifier.doi10.12988/ams.2015.4121003
dc.description.abstract

A constructive method is developed to obtain optimal sensor and actuator loca- tions for inverse optimal state estimation and control of a class of linear distributed parameter systems (DPSs). Given the inverse optimal state estimators and con- trollers for linear DPSs developed by the first author recently, it is shown that the performance index for optimal locations of sensors and actuators is the trace of the solution of the Bernoulli partial differential equations (PDEs), which are the optimal state estimation and control gain matrices. Thus, the optimal locations are designed so as to minimize the trace of the solution of the Bernoulli partial differential equations.

dc.publisherHikari Ltd.
dc.titleOptimal sensor and actuator locations in linear distributed parameter systems
dc.typeJournal Article
dcterms.source.volume9
dcterms.source.number17-20
dcterms.source.startPage803
dcterms.source.endPage820
dcterms.source.issn1312-885X
dcterms.source.titleApplied Mathematical Sciences
curtin.note

This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by/4.0/

curtin.departmentDepartment of Mechanical Engineering
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record