Rank-defect integer estimation and phase-only modernized GPS ambiguity resolution
Access Status
Authors
Date
2003Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Carrier-phase ambiguity resolution is usually based on the assumption that the underlying model of observation equations is of full rank. In this contribution the model of observation equations is assumed to be of less than full rank. The well-known three-step procedure of integer least squares is generalized and it is shown how the solution can be affected by the rank deficiency. Although the theory is of interest in its own right, a prime application is found in the problem of phase-only ambiguity resolution in the presence of ionospheric delays. The impact of the third global positioning system (GPS) frequency is therefore studied and it is shown by means of suitable ambiguity transformation which ambiguities are integer estimable and which are not in the case of phase-only modernized GPS. A pitfall when using ionosphere-free linear phase combinations is identified. It is shown that only a particular class of such linear phase combinations permits a parameterization in terms of integer-estimable ambiguities. This pitfall does not manifest itself so clearly with the current dual-frequency GPS system.
Related items
Showing items related by title, author, creator and subject.
-
Arora, Balwinder Singh (2012)The precise positioning applications have long been carried out using dual frequency carrier phase and code observables from the Global Positioning System (GPS). The carrier phase observables are very precise in comparison ...
-
Wang, Kan; Chen, P.; Teunissen, Peter (2018)In this contribution, we study the phase-only ambiguity resolution and positioning performance of GPS for short baselines. It is well known that instantaneous (single-epoch) ambiguity resolution is possible when both phase ...
-
Teunissen, Peter (2003)Abstract. In this invited contribution a brief review will be presented of the integer estimation theory as developed by the author over the last decade and which started with the introduction of the LAMBDA method in 1993. ...