Effect of a reducing agent for silver on the electrochemical activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3-d electrode prepared by electroless deposition technique
Access Status
Authors
Date
2009Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-d (Ag/BSCF) electrodes were prepared using an electroless deposition technique. The morphology, microstructure and oxygen reduction reaction activity of the resulted Ag/BSCF electrodes were comparatively studied using Fourier transform infrared spectra, environmental scanning electron microscopy, temperature-programmed oxygen desorption, X-ray diffraction, and electrochemical impedance spectroscopy. An area-specific resistance as low as 0.038 O cm2 was achieved for N2H4-reduced Ag/BSCF cathode at 600 °C. Carbonates were detected over the BSCF surface during the reduction of silver, which deteriorated both the charge-transfer process and diffusion process of HCHO-reduced Ag/BSCF cathode for the oxygen electrochemical reduction reaction. An anode-supported single cell with an N2H4-reduced Ag/BSCF cathode showed a peak power of 826 mW cm-2 at 600 °C. In comparison, only 672 mW cm-2 was observed with the HCHO-reduced Ag/BSCF cathode. © 2008 Elsevier B.V. All rights reserved.
Related items
Showing items related by title, author, creator and subject.
-
Lin, Y.; Ran, R.; Shao, Zongping (2010)Electrochemical performance of silver-modified Ba0.5Sr 0.5Co0.8Fe0.2O3-d (BSCF-Ag) as oxygen reduction electrodes for a protonic intermediate-temperature solid-oxide fuel cell (SOFC-H+) with BaZr0.1Ce0.8Y 0.1O3 (BZCY) ...
-
Zhou, W.; Ran, R.; Shao, Zongping (2009)Solid-oxide fuel cells (SOFCs) convert chemical energy directly into electric power in a highly efficient way. Lowering the operating temperature of SOFCs to around 500-800 °C is one of the main goals in current SOFC ...
-
Shao, Zongping; Haile, S. (2010)© 2011 Nature Publishing Group, a division of Macmillan Publishers Limited and published by World Scientific Publishing Co. under licence. All rights reserved.Fuel cells directly and efficiently convert chemical energy ...