High-Spatial-Resolution
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
High-spatial-resolution isotope analyses have revolutionised U–(Th–)Pb geochronology. These analyses can be done at scales of a few tens of microns or less using secondary ion mass spectrometry or laser ablation inductively coupled plasma mass spectrometry. They allow determination of the internal age variation of uranium- and thorium-bearing minerals and as a consequence much greater understanding of Earth system processes. The determination of variation on the micron scale necessitates the sampling of small volumes, which restricts the achievable precision but allows discrimination of discrete change, linkage to textural information, and determination of multiple isotopic and elemental data sets on effectively the same material. High-spatial-resolution analysis is being used in an increasing number of applications. Some of these applications have become fundamental to their scientific fields, while others have opened new opportunities for research.
Related items
Showing items related by title, author, creator and subject.
-
Dorji, P.; Fearns, Peter (2017)The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ...
-
Robinson, Todd Peter (2008)Invasive plants pose serious threats to economic, social and environmental interests throughout the world. Developing strategies for their management requires a range of information that is often impractical to collect ...
-
Wright, Graeme L. (2000)The objective of this study was to investigate the application of multiscale satellite remote sensing data for assessment of land cover change in the rural-urban fringe. Inherent in this assessment process was the ...