Show simple item record

dc.contributor.authorNemchin, Alexander
dc.contributor.authorHorstwood, Matthew
dc.contributor.authorWhitehouse, Martin
dc.date.accessioned2017-01-30T14:29:34Z
dc.date.available2017-01-30T14:29:34Z
dc.date.created2014-03-16T20:01:15Z
dc.date.issued2013
dc.identifier.citationNemchin, A and Horstwood, M and Whitehouse, M. 2013. High-Spatial-Resolution Geochronology. 9: pp. 31-37.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/39042
dc.identifier.doi10.2113/gselements.9.1.31
dc.description.abstract

High-spatial-resolution isotope analyses have revolutionised U–(Th–)Pb geochronology. These analyses can be done at scales of a few tens of microns or less using secondary ion mass spectrometry or laser ablation inductively coupled plasma mass spectrometry. They allow determination of the internal age variation of uranium- and thorium-bearing minerals and as a consequence much greater understanding of Earth system processes. The determination of variation on the micron scale necessitates the sampling of small volumes, which restricts the achievable precision but allows discrimination of discrete change, linkage to textural information, and determination of multiple isotopic and elemental data sets on effectively the same material. High-spatial-resolution analysis is being used in an increasing number of applications. Some of these applications have become fundamental to their scientific fields, while others have opened new opportunities for research.

dc.publisherELSEVIER SCI LTD,
dc.subjectisotopes
dc.subjectsedimentary provenance
dc.subjectzircon
dc.subjectmineral zoning
dc.subjecthigh-spatial-resolution analyses
dc.titleHigh-Spatial-Resolution
dc.typeJournal Article
dcterms.source.volume9
dcterms.source.startPage31
dcterms.source.endPage37
dcterms.source.issn1871-1014
dcterms.source.titleGeochronology
curtin.department
curtin.accessStatusOpen access via publisher


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record