Improved damage identification in bridge structures subject to moving loads: Numerical and experimental studies
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
NOTICE: this is the author’s version of a work that was accepted for publication in International Journal of Mechanical Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Mechanical Sciences, Vol. 74 (2013). DOI: 10.1016/j.ijmecsci.2013.05.002
Collection
Abstract
This paper proposes a damage identification approach in bridge structures under moving vehicular loads without knowledge of the vehicle properties and the time-histories of moving interaction forces. The dynamic response reconstruction technique in wavelet domain is developed for a structure subject to moving vehicular loads. The transmissibility matrix between two sets of time-domain response vectors from the structure is formulated using the unit impulse response function in the wavelet domain with the moving loads at different locations. Measured acceleration responses of the structure in the damaged state are required for the identification, and the damage identification procedure is conducted without knowledge of the time-histories of the moving loads. A dynamic response sensitivity-based method is used for the structural damage identification, and local damage is modeled as a change in the elemental stiffness factors. The adaptive Tikhonov regularization technique is adopted to improve the identification results when noise effect is included in the measurements. Numerical studies on a three-dimensional box-section girder are conducted to illustrate the effectiveness and performance of the proposed approach, and the simulated damage can be effectively identified even with 10% noise in the measurements. The proposed method is also found capable to identify the damage zone with an approximate estimation of the damage extent when under the influence of initial model errors of the structure. Experimental studies on a Tee-section prestressed concrete beam subject to a moving vehicle are preformed to validate the proposed approach. Identification results from the experimental test data show that the damage locations can be identified with a reasonable estimate of the damage extent.
Related items
Showing items related by title, author, creator and subject.
-
Wang, S.; Li, Jun; Luo, H.; Zhu, H. (2019)Most current studies with vibration-based Structure Health Monitoring (SHM) techniques has been focused on aboveground civil infrastructure. However, a few studies have been conducted for underground structures. The ...
-
Hao, Hong; Li, Jun (2017)© 2017 International Society for Structural Health Monitoring of Intelligent Infrastrucure. All rights reserved. Many sources of uncertainties, which could be introduced into the structure during their construction and ...
-
Chencho,; Li, Jun ; Hao, Hong (2024)This paper presents an approach for structural damage quantification using a long short-term memory (LSTM) auto-encoder and impulse response functions (IRF). Among time domain responses-based methods for structural damage ...