Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    High-temperature steam reforming of bio-oil derived light organics and methane to hydrogen-rich gas with trace CO via rational temperature control

    Access Status
    Fulltext not available
    Authors
    Hu, Xun
    Zhang, Lijun
    Dong, Dehua
    Lu, G.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Hu, X. and Zhang, L. and Dong, D. and Lu, G. 2014. High-temperature steam reforming of bio-oil derived light organics and methane to hydrogen-rich gas with trace CO via rational temperature control. RSC Advances. 4: pp. 18924-18929.
    Source Title
    RSC Advances
    DOI
    10.1039/c4ra02037e
    ISSN
    2046-2069
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/39258
    Collection
    • Curtin Research Publications
    Abstract

    Steam reforming of methane or bio-oil is generally performed at high temperatures (>600 °C) to maintain the efficiency of the process. One main disadvantage of steam reforming at that high temperature is the formation of a large amount of CO due to the predomination of the reverse water gas shift reaction and the reformate gas with this level of CO cannot feed fuel cells. In this study a reactor with constant and decreasing temperature zones is developed to produce hydrogen-rich gas with trace CO from bio-oil derived light organics and methane. In the constant-temperature zone, the high temperature employed effectively promotes the reforming of organics and suppresses the generation of both complex organic by-products and coke. In the decreasing temperature zone, the CO produced in the constant-temperature zone is stepwisely and efficiently reduced to a ppm level using steam. In addition, the coke distribution along the catalyst bed varied a lot in the constant-temperature zone and the decreasing temperature zone, due to the different reaction network in the different temperature ranges. Via rational reaction temperature control, the efficient reforming of methane and the bio-oil derived light organics and the simultaneous elimination of CO is successfully achieved in one step in one reactor.

    Related items

    Showing items related by title, author, creator and subject.

    • A feasibility study of methane reforming by partial oxidation.
      Zhu, Jian N. (2001)
      Utilisation of natural gas (mainly methane, CH[subscript]4), a clean and abundant resource, is of great importance. Conventional method, steam reforming, though still dominant, requires a considerately high capital ...
    • Transformation of bio-oil during pyrolysis and reforming
      Wang, Yi (2012)
      The pyrolysis of biomass is a very effective means of energy densification. With the bio-char returned to the field as a soil conditioner and for carbon bio-sequestration, bio-oil can be used in many ways, including being ...
    • Steam reforming of phenol-ethanol to produce hydrogen over bimetallic NiCu catalysts supported on sepiolite
      Liang, T.; Wang, Y.; Chen, M.; Yang, Z.; Liu, Shaomin; Zhou, Z.; Li, X. (2017)
      © 2017 Hydrogen Energy Publications LLC. A series of NiCu bimetallic catalysts supported on sepiolite (Ni x Cu y /SEP) were prepared by co-precipitation method. The all as-prepared catalysts were characterized by using ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.