A comparative study of x-ray shielding capability in ion-implanted acrylic and glass
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
NOTICE: this is the author’s version of a work that was accepted for publication in Radiation Physics and Chemistry. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Radiation Physics and Chemistry, Vol. 85 (2013). DOI: 10.1016/j.radphyschem.2012.12.021
Collection
Abstract
Samples of acrylic and glass were implanted with tungsten (W) and lead (Pb) to investigate their X-ray attenuation characteristics. The near-surface composition depth profiles of ion-implanted acrylic and glass samples were studied using ion-beam analysis (Rutherford backscattering spectroscopy—RBS). The effect of implanted ions on the X-ray attenuation ability was studied using a conventional laboratory X-ray machine with X-ray tube voltages ranging from 40 to 100 kV at constant exposure 10 mAs. The results were compared with previous work on ion-implanted epoxy. As predicted, the RBS results and X-ray attenuation for both ion-implanted acrylic and glass increase with the type of implanted ions when compared to the controls. However, since the glass is denser than epoxy or acrylic, it has provided the higher X-ray attenuation property and higher RBS ion concentration implanted with a shorter range of the ion depth profile when compared to epoxy and acrylic. A prolonged time is necessary for implanting acrylic with a very high nominal dose to minimize a high possibility of acrylic to melt during the process.
Related items
Showing items related by title, author, creator and subject.
-
Noor Azman, N.; Siddiqu, S.; Ionescu, M.; Low, Jim (2012)The epoxy samples were implanted with heavy ions such as tungsten (W), gold (Au) and lead (Pb) to investigate the attenuation characteristics of these composites. Near-surface composition depth profiling of ion-implanted ...
-
Dambatta, M.; Izman, S.; Yahaya, B.; Lim, J.; Kurniawan, Denni (2015)© 2015 Elsevier B.V. Amorphous Mg-based bulk metallic glasses (BMGs) are relatively new materials for various engineering applications because of their superior mechanical properties and corrosion resistance. Recently, ...
-
Huang, L.; Jia, S.; Li, Y.; Zhao, S.; Deng, D.; Wang, H.; Jia, Guohua; Hua, Y.; Xu, S. (2015)Transparent Tb3+-doped glass ceramics containing BaF2 nanocrystals were prepared by melt-quenching method with subsequent heat treatment. The XRD and EDS results showed the precipitated crystalline phase in the glass ...