Stabilization of a Coupled Second Order ODE-wave System
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISSN
School
Remarks
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Collection
Abstract
This paper considers the stabilization of a coupled second order ODE-wave system, where the ODE dynamics contain the solution of the wave equation at an intermediate point. We design a stabilizing feedback controller by choosing a suitable target system and backstepping transformation. The backstepping transformation is defined in terms of several kernel functions, for which we establish existence, uniqueness and smoothness properties. We also prove exponential stability for the resulting closed-loop system. Finally, the effectiveness of the proposed feedback controller is verified via a numerical example.
Related items
Showing items related by title, author, creator and subject.
-
Xu, Honglei (2009)Switched systems belong to a special class of hybrid systems, which consist of a collection of subsystems described by continuous dynamics together with a switching rule that specifies the switching between the subsystems. ...
-
Besa, Bunda (2010)The decline is a major excavation in metalliferous mining since it provides the main means of access to the underground and serves as a haulage route for underground trucks. However, conventional mining of the decline to ...
-
Stoffel, Karl; Cunneen, Sam; Morgan, Robert; Nicholls, Rochelle; Stachowiak, Gwidon (2008)In distal humerus fractures, the restoration of stability is important to allow early mobilization and hence more favorable functional outcomes. In this article, we compare the biomechanical stability of perpendicular and ...