PKCe as a novel promoter of skeletal muscle differentiation and regeneration
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Introduction: Satellite cells are muscle resident stem cells and are responsible for muscle regeneration. In this study we investigate the involvement of PKCε during muscle stem cell differentiation in vitro and in vivo. Here, we describe the identification of a previously unrecognized role for the PKCε–HMGA1 signaling axis in myoblast differentiation and regeneration processes. Methods: PKCε expression was modulated in the C2C12 cell line and primary murine satellite cells in vitro, as well as in an in vivo model of muscle regeneration. Immunohistochemistry and immunofluorescence, RT-PCR and shRNA silencing techniques were used to determine the role of PKCε and HMGA1 in myogenic differentiation. Results: PKCε expression increases and subsequently re-localizes to the nucleus during skeletal muscle cell differentiation. In the nucleus, PKCε blocks Hmga1 expression to promote Myogenin and Mrf4 accumulation and myoblast formation. Following in vivo muscle injury, PKCε accumulates in regenerating, centrally-nucleated myofibers. Pharmacological inhibition of PKCε impairs the expression of two crucial markers of muscle differentiation, namely MyoD and Myogenin, during injury induced muscle regeneration. Conclusion: This work identifies the PKCε–HMGA1 signaling axis as a positive regulator of skeletal muscle differentiation.
Related items
Showing items related by title, author, creator and subject.
-
Moheimani, F.; Roth, H.M.; Cross, J.; Reid, A.T.; Shaheen, F.; Warner, S.M.; Hirota, J.A.; Kicic, Anthony ; Hallstrand, T.S.; Kahn, M.; Stick, S.M.; Hansbro, P.M.; Hackett, T.L.; Knight, D.A. (2015)© 2015 Elsevier Ltd. The epithelium of asthmatics is characterized by reduced expression of E-cadherin and increased expression of the basal cell markers ck-5 and p63 that is indicative of a relatively undifferentiated ...
-
Chaturvedi, V.; Naskar, D.; Kinnear, B.; Grenik, E.; Dye, Danielle; Grounds, M.; Kundu, S.; Coombe, D. (2016)Human adult skeletal muscle has a limited ability to regenerate after injury and therapeutic options for volumetric muscle loss are few. Technologies to enhance regeneration of tissues generally rely upon bioscaffolds to ...
-
Schmeckpeper, J.; Ikeda, Y.; Kumar, A.; Metharom, Pat; Russell, S.; Caplice, N. (2009)Lentiviral vectors encoding for identifiable marker genes controlled by lineage-specific promoters can be used to track differentiation of bone marrow progenitors into endothelial cells and/or smooth muscle cells. Human ...