Unsupervised manifold alignment using soft-assign technique
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2016, Springer-Verlag Berlin Heidelberg. In this paper, we propose a robust unsupervised algorithm for automatic alignment of two manifolds in different datasets with possibly different dimensionalities. The significant contribution is that the proposed alignment algorithm is performed automatically without any assumptions on the correspondences between the two manifolds. For such purpose, we first automatically extract local feature histograms at each point of the manifolds and establish an initial similarity between the two datasets by matching their histogram-based features. Based on such similarity, an embedding space is estimated where the distance between the two manifolds is minimized while maximally retaining the original structure of the manifolds. The elegance of this idea is that such complicated problem is formulated as a generalized eigenvalue problem, which can be easily solved. The alignment process is achieved by iteratively increasing the sparsity of correspondence matrix until the two manifolds are correctly aligned and consequently one can reveal their joint structure. We demonstrate the effectiveness of our algorithm on different datasets by aligning protein structures, 3D face models and facial images of different subjects under pose and lighting variations. Finally, we also compare with a state-of-the-art algorithm and the results show the superiority of the proposed manifold alignment in terms of vision effect and numerical accuracy.
Related items
Showing items related by title, author, creator and subject.
-
Fan, Ke; Mian, A.; Liu, Wan-Quan; Li, Ling (2014)We propose a new unsupervised algorithm for the automatic alignment of two manifolds of different datasets with possibly different dimensionalities. Alignment is performed automatically without any assumptions on the ...
-
Meng, D.; Leung, Yee-Hong; Xu, Z. (2013)Detecting intrinsic loop structures of a data manifold is the necessary prestep for the proper employment of the manifold learning techniques and of fundamental importance in the discovery of the essential representational ...
-
Rana, Santu (2010)Machine based face recognition is an important area of research that has attracted significant attention over the past few decades. Recently, multilinear models of face images have gained prominence as an alternative ...