Show simple item record

dc.contributor.authorFan, K.
dc.contributor.authorMian, A.
dc.contributor.authorLiu, Wan-Quan
dc.contributor.authorLi, L.
dc.date.accessioned2017-01-30T14:42:40Z
dc.date.available2017-01-30T14:42:40Z
dc.date.created2016-09-11T19:30:38Z
dc.date.issued2016
dc.identifier.citationFan, K. and Mian, A. and Liu, W. and Li, L. 2016. Unsupervised manifold alignment using soft-assign technique. Machine Vision and Applications. 27 (6): pp. 929-942.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/40434
dc.identifier.doi10.1007/s00138-016-0772-8
dc.description.abstract

© 2016, Springer-Verlag Berlin Heidelberg. In this paper, we propose a robust unsupervised algorithm for automatic alignment of two manifolds in different datasets with possibly different dimensionalities. The significant contribution is that the proposed alignment algorithm is performed automatically without any assumptions on the correspondences between the two manifolds. For such purpose, we first automatically extract local feature histograms at each point of the manifolds and establish an initial similarity between the two datasets by matching their histogram-based features. Based on such similarity, an embedding space is estimated where the distance between the two manifolds is minimized while maximally retaining the original structure of the manifolds. The elegance of this idea is that such complicated problem is formulated as a generalized eigenvalue problem, which can be easily solved. The alignment process is achieved by iteratively increasing the sparsity of correspondence matrix until the two manifolds are correctly aligned and consequently one can reveal their joint structure. We demonstrate the effectiveness of our algorithm on different datasets by aligning protein structures, 3D face models and facial images of different subjects under pose and lighting variations. Finally, we also compare with a state-of-the-art algorithm and the results show the superiority of the proposed manifold alignment in terms of vision effect and numerical accuracy.

dc.titleUnsupervised manifold alignment using soft-assign technique
dc.typeJournal Article
dcterms.source.volume27
dcterms.source.number6
dcterms.source.startPage929
dcterms.source.endPage942
dcterms.source.issn0932-8092
dcterms.source.titleMachine Vision and Applications
curtin.departmentDepartment of Computing
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record