A surface spherical harmonic expansion of gravity anomalies on the ellipsoid
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
The final publication is available at Springer via http://doi.org/10.1007/s00190-015-0832-2
Collection
Abstract
A surface spherical harmonic expansion of gravity anomalies with respect to a geodetic reference ellipsoid can be used to model the global gravity field and reveal its spectral properties. In this paper, a direct and rigorous transformation between solid spherical harmonic coefficients of the Earth’s disturbing potential and surface spherical harmonic coefficients of gravity anomalies in ellipsoidal approximation with respect to a reference ellipsoid is derived. This transformation cannot rigorously be achieved by the Hotine–Jekeli transformation between spherical and ellipsoidal harmonic coefficients. The method derived here is used to create a surface spherical harmonic model of gravity anomalies with respect to the GRS80 ellipsoid from the EGM2008 global gravity model. Internal validation of the model shows a global RMS precision of <1 nGal. This is significantly more precise than previous solutions based on spherical approximation or approximations to order e2 or e3, which are shown to be insufficient for the generation of surface spherical harmonic coefficients with respect to a geodetic reference ellipsoid. Numerical results of two applications of the new method (the computation of ellipsoidal corrections to gravimetric geoid computation, and area means of gravity anomalies in ellipsoidal approximation) are provided.
Related items
Showing items related by title, author, creator and subject.
-
Claessens, Sten; Hirt, Christian (2013)Forward gravity modeling in the spectral domain traditionally relies on spherical approximation. However, this level of approximation is insufficient for some present day high-accuracy applications. Here we present two ...
-
Hirt, C.; Rexer, M.; Dewan, Ashraf; Rummel, R. (2017)© 2017 Springer-Verlag Berlin HeidelbergComparisons between high-degree models of the Earth’s topographic and gravitational potential may give insight into the quality and resolution of the source data sets, provide ...
-
Claessens, Sten (2006)The determination of the figure of the Earth and its gravity field has long relied on methodologies that approximate the Earth by a sphere, but this level of accuracy is no longer adequate for many applications, due to ...