Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Ellipsoidal topographic potential: New solutions for spectral forward gravity modeling of topography with respect to a reference ellipsoid

    Access Status
    Open access via publisher
    Authors
    Claessens, Sten
    Hirt, Christian
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Claessens, S.J. and Hirt, C. 2013. Ellipsoidal topographic potential: New solutions for spectral forward gravity modeling of topography with respect to a reference ellipsoid. Journal of Geophysical Research. 118 (11): pp. 5991-6002.
    Source Title
    Journal of Geophysical Research
    DOI
    10.1002/2013JB010457
    ISSN
    2169-9313
    URI
    http://hdl.handle.net/20.500.11937/42299
    Collection
    • Curtin Research Publications
    Abstract

    Forward gravity modeling in the spectral domain traditionally relies on spherical approximation. However, this level of approximation is insufficient for some present day high-accuracy applications. Here we present two solutions that avoid the traditional spherical approximation in spectral forward gravity modeling. The first solution (the extended integration method) applies integration over masses from a reference sphere to the topography and applies a correction for the masses between ellipsoid and sphere. The second solution (the harmonic combination method) computes topographic potential coefficients from a combination of surface spherical harmonic coefficients of topographic heights above the ellipsoid, based on a relation among spherical harmonic functions introduced by Claessens (2005). Using a degree 2160 spherical harmonic model of the topographic masses, both methods are applied to derive the Earth’s ellipsoidal topographic potential in spherical harmonics. The harmonic combination method converges fastest and—akin to the EGM2008 geopotential model—generates additional spherical harmonic coefficients in spectral band 2161 to 2190 which are found crucial for accurate evaluation of the ellipsoidal topographic potential at high degrees. Therefore, we recommend use of the harmonic combination method to model ellipticity in spectral-domain forward modeling. The method yields ellipsoidal topographic potential coefficients which are “compatible” with global Earth geopotential models constructed in ellipsoidal approximation, such as EGM2008. It shows that the spherical approximation significantly underestimates degree correlation coefficients among geopotential and topographic potential. The topographic potential model is, for example, of immediate value for the calculation of Bouguer gravity anomalies in fully ellipsoidal approximation.

    Related items

    Showing items related by title, author, creator and subject.

    • The relation between degree-2160 spectral models of Earth’s gravitational and topographic potential: a guide on global correlation measures and their dependency on approximation effects
      Hirt, C.; Rexer, M.; Dewan, Ashraf; Rummel, R. (2017)
      © 2017 Springer-Verlag Berlin HeidelbergComparisons between high-degree models of the Earth’s topographic and gravitational potential may give insight into the quality and resolution of the source data sets, provide ...
    • Layer-Based Modelling of the Earth’s Gravitational Potential up to 10-km Scale in Spherical Harmonics in Spherical and Ellipsoidal Approximation
      Rexer, M.; Hirt, C.; Claessens, Sten; Tenzer, R. (2016)
      © 2016 Springer Science+Business Media Dordrecht. Global forward modelling of the Earth’s gravitational potential, a classical problem in geophysics and geodesy, is relevant for a range of applications such as gravity ...
    • A surface spherical harmonic expansion of gravity anomalies on the ellipsoid
      Claessens, Sten; Hirt, C. (2015)
      A surface spherical harmonic expansion of gravity anomalies with respect to a geodetic reference ellipsoid can be used to model the global gravity field and reveal its spectral properties. In this paper, a direct and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.