Elastic anisotropy estimation from laboratory measurements of velocity and polarization of quasi-P-waves using laser interferometry
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
Copyright © 2011 Society of Exploration Geophysicists.
Collection
Abstract
A new method for conducting laboratory measurements of the velocities and polarizations of compressional and shear waves in rock samples uses a laser Doppler interferometer (LDI). LDI can measure the particle velocity of a small (0.03mm2) element of the surface of the sample along the direction of the laser beam. By measuring the particle velocity of the same surface element in three linearly independent directions and then transforming those velocities to Cartesian coordinates, three orthogonal components of the particle-velocity vector are obtained. Thus, LDI can be used as a localized three-component(3C) receiver of ultrasonic waves, and, together with a piezoelectric transducer as a source, it can simulate a 3C seismic experiment in the laboratory. Performing such 3C measurements at various locations on the surface of the sample produces a 3C seismogram, which can be used to separate the P-wave and two S-waves and to find the polarizations and traveltimes of those waves. Then, the elasticity tensor of the medium can be obtained by minimizing the misfit between measured and predicted polarizations and traveltimes. Computation of the polarizations and traveltimes of body waves inside a sample with a given elasticity tensor is based on the Christoffel equation.The predicted polarizations on the surface then are obtained using the anisotropic Zoeppritz equations. The type of velocity measured (phase or group velocity) depends on the acquisition geometry and the material properties. This is taken into account in the inversion procedure. A “walkaway” laboratory experiment demonstrates the high accuracy of this method.
Related items
Showing items related by title, author, creator and subject.
-
Gurevich, B.; Lebedev, M.; Madadi, M.; Bona, Andrej; Pevzner, R. (2015)Laboratory measurements of elastic properties of rocks are important for calibration of seismic data and for corroboration of theoretical models of rocks. The most common way of determining the elastic properties of rock ...
-
Carson, Michael; Lebedev, Maxim (2014)We present laboratory measurements of ultrasonic S waves in Bentheim sandstone using laser Doppler interferometry (LDI). S wave velocities and polarizations (along with those of P waves) are important in the characterization ...
-
Nourifard, N.; Lebedev, Maxim (2018)© 2018 European Association of Geoscientists & Engineers The effect of the amplitude of ultrasonic waves propagating through a sample is not often taken into account in laboratory experiments. However, ultrasonic waves ...