Crystallization kinetics and phase transformations in aluminium ion-implanted electrospun TiO2 nanofibers
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Electrospun TiO2 nanofibers were implanted with aluminum ions, and their crystallization kinetics, phase transformations, and activation energies were investigated from 25 to 900 °C by in situ high-temperature synchrotron radiation diffraction. The amorphous non-implanted and Al ion-implanted TiO2 nanofibers transformed to crystalline anatase at 600 °C and to rutile at 700 °C. The TiO2 phase transformation of the Al ion-implanted material was accelerated relative to non-implanted sample. Compared with non-implanted nanofibers, the Al-implanted materials yielded a decreased activation energies from 69(17) to 29(2) kJ/mol for amorphous-to-anatase transformation and from 112(15) to 129(5) kJ/mol for anatase-to-rutile transformation. A substitution of smaller Al ions for Ti in the TiO2 crystal structure results in accelerated titania phase transformation and a concomitant reduction in the activation energies.
Related items
Showing items related by title, author, creator and subject.
-
Albetran, H.; O Connor, B.; Prida, V.; Low, It Meng (2015)The influence of V ion implantation on the thermal response of electrospun amorphous TiO2 nanofibers was studied with reference to structural phase transformation behavior, using in situ synchrotron radiation diffraction ...
-
Albetran, H.; Low, It Meng (2016)Copyright © Materials Research Society 2016.Titania nanotube arrays were synthesized electrochemically by anodization of titanium foils, and the synthesized titania nanotubes were then implanted with indium ions. The ...
-
Albetran, H.; O Connor, B.; Low, It Meng (2016)This paper reports on titania absolute phase level (amorphous, anatase, and rutile forms) changes in electrospun amorphous titania nanofibers from 25 to 900 °C in air and argon atmospheres. A novel method was developed ...