Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Analysis of cytochrome b5 reductase-mediated metabolism in the phytopathogenic fungus Zymoseptoria tritici reveals novel functionalities implicated in virulence

    231620_231620.pdf (1.560Mb)
    Access Status
    Open access
    Authors
    Derbyshire, Mark
    Michaelson, L.
    Parker, J.
    Kelly, S.
    Thacker, U.
    Powers, S.
    Bailey, A.
    Hammond-Kosack, K.
    Courbot, M.
    Rudd, J.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Derbyshire, M. and Michaelson, L. and Parker, J. and Kelly, S. and Thacker, U. and Powers, S. and Bailey, A. et al. 2015. Analysis of cytochrome b5 reductase-mediated metabolism in the phytopathogenic fungus Zymoseptoria tritici reveals novel functionalities implicated in virulence. Fungal Genetics and Biology. 82: pp. 69-84.
    Source Title
    Fungal Genetics and Biology
    DOI
    10.1016/j.fgb.2015.05.008
    ISSN
    1087-1845
    School
    Centre for Crop Disease Management
    Remarks

    This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by/4.0/

    URI
    http://hdl.handle.net/20.500.11937/40951
    Collection
    • Curtin Research Publications
    Abstract

    Septoria tritici blotch (STB) caused by the Ascomycete fungus Zymoseptoria tritici is one of the most economically damaging diseases of wheat worldwide. Z. tritici is currently a major target for agricultural fungicides, especially in temperate regions where it is most prevalent. Many fungicides target electron transfer enzymes because these are often important for cell function. Therefore characterisation of genes encoding such enzymes may be important for the development of novel disease intervention strategies. Microsomal cytochrome b5 reductases (CBRs) are an important family of electron transfer proteins which in eukaryotes are involved in the biosynthesis of fatty acids and complex lipids including sphingolipids and sterols. Unlike the model yeast Saccharomyces cerevisiae which possesses only one microsomal CBR, the fully sequenced genome of Z. tritici bears three possible microsomal CBRs. RNA sequencing analysis revealed that ZtCBR1 is the most highly expressed of these genes under all in vitro and in planta conditions tested, therefore ΔZtCBR1 mutant strains were generated through targeted gene disruption.These strains exhibited delayed disease symptoms on wheat leaves and severely limited asexual sporulation. ΔZtCBR1 strains also exhibited aberrant spore morphology and hyphal growth in vitro. These defects coincided with alterations in fatty acid, sphingolipid and sterol biosynthesis observed through GC–MS and HPLC analyses. Data is presented which suggests that Z. tritici may use ZtCBR1 as an additional electron donor for key steps in ergosterol biosynthesis, one of which is targeted by azole fungicides. Our study reports the first functional characterisation of CBR gene family members in a plant pathogenic filamentous fungus. This also represents the first direct observation of CBR functional ablation impacting upon fungal sterol biosynthesis.

    Related items

    Showing items related by title, author, creator and subject.

    • Phosphopantetheinyl transferase (Ppt)-mediated biosynthesis of lysine, but not siderophores or DHN melanin, is required for virulence of Zymoseptoria tritici on wheat
      Derbyshire, Mark; Gohari, A.; Mehrabi, R.; Kilaru, S.; Steinberg, G.; Ali, S.; Bailey, A.; Hammond-Kosack, K.; Kema, G.; Rudd, J. (2018)
      Zymoseptoria tritici is the causal agent of Septoria tritici blotch (STB) disease of wheat. Z. tritici is an apoplastic fungal pathogen, which does not penetrate plant cells at any stage of infection, and has a long initial ...
    • Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition
      Rudd, J.; Kanyuka, K.; Hassani-Pak, K.; Derbyshire, Mark; Andongabo, A.; Devonshire, J.; Lysenko, A.; Saqi, M.; Desai, N.; Powers, S.; Hooper, J.; Ambroso, L.; Bharti, A.; Farmer, A.; Hammond-Kosack, K.; Dietrich, R.; Courbot, M. (2015)
      The hemibiotrophic fungus Zymoseptoria tritici causes Septoria tritici blotch disease of wheat (Triticum aestivum). Pathogen reproduction on wheat occurs without cell penetration, suggesting that dynamic and intimate ...
    • Diversifying selection in the wheat stem rust fungus acts predominantly on pathogen-associated gene families and reveals candidate effectors
      Sperschneider, J.; Ying, H.; Dodds, P.; Gardiner, D.; Upadhyaya, N.; Singh, Karam; Manners, J.; Taylor, J. (2014)
      Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.