Effect of asperities on stress dependency of elastic properties of cracked rocks
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2015 Elsevier Ltd. Rocks are complex heterogeneous materials consisting of solid minerals and fluid-filled pore space. Sedimentary rocks often undergo significant continuous stiffening under stress. The main mechanism of this stiffening is an increase of the number of contacts between adjacent grains and asperities on opposite surfaces of cracks. We propose an analytical model for effective compliance of finite cracks with contacting surfaces. To this end we utilize known exact solutions for an annular crack and a contact of the welded-area type. A set of numerical tests verifies applicability of the model to realistic rock microstructures. A micromechanical theory of changes of the elastic moduli with external loading is based on the crack stiffening by contacting asperities. The proposed theory is then used to analyze results of ultrasonic experiments on a sandstone sample. Parameters of the rock sample recovered from the pressure dependencies of seismic waves are consistent with each other and physically reasonable. Demonstrated applications of the model are based on several simplified assumptions but the theory may incorporate further generalizations, namely: interaction of contacts, inclusion size distribution and more complicated modeling of the microstructure evolution with confining stress.
Related items
Showing items related by title, author, creator and subject.
-
Madadi, Mahyar; Pervukhina, Marina; Gurevich, Boris (2013)We propose an analytical model for seismic anisotropy caused by the application of an anisotropic stress to an isotropic dry rock. We first consider an isotropic, linearly elastic medium (porous or non-porous) permeated ...
-
Glubokovskikh, S.; Rok, V.; Gurevich, Boris (2013)Most models of pressure dependency of rock properties relate such a dependency to the distribution of aspect ratios of pores and cracks. This approach might not always be accurate because moderate roughness of crack ...
-
Gurevich, Boris; Pervukhina, M. (2010)One of the main causes of azimuthal anisotropy in sedimentary rocks is anisotropy of tectonic stresses in the earth's crust. In this paper we analytically derive the pattern of seismic anisotropy caused by application of ...