Show simple item record

dc.contributor.authorShakhvorostov, D.
dc.contributor.authorNistor, R.
dc.contributor.authorKrusin-Elbaum, L.
dc.contributor.authorMartyna, G.
dc.contributor.authorNewns, D.
dc.contributor.authorElmegreen, B.
dc.contributor.authorLiu, X.
dc.contributor.authorHughes, Zak
dc.contributor.authorPaul, S.
dc.contributor.authorCabral, C.
dc.contributor.authorRaoux, S.
dc.contributor.authorShrekenhamer, D.
dc.contributor.authorBasov, D.
dc.contributor.authorSong, Y.
dc.contributor.authorMϋser, M.
dc.date.accessioned2017-01-30T10:37:00Z
dc.date.available2017-01-30T10:37:00Z
dc.date.created2015-03-03T20:17:45Z
dc.date.issued2009
dc.identifier.citationShakhvorostov, D. and Nistor, R. and Krusin-Elbaum, L. and Martyna, G. and Newns, D. and Elmegreen, B. and Liu, X. et al. 2009. Evidence for electronic gap-driven metal-semiconductor transition in phase-change materials. Proceedings of the National Academy of Sciences of USA. 106 (27): pp. 10907-10911.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/4149
dc.identifier.doi10.1073/pnas.0812942106
dc.description.abstract

Phase-change materials are functionally important materials that can be thermally interconverted between metallic (crystalline) and semiconducting (amorphous) phases on a very short time scale. Although the interconversion appears to involve a change in local atomic coordination numbers, the electronic basis for this process is still unclear. Here, we demonstrate that in a nearly vacancy-free binary GeSb system where we can drive the phase change both thermally and, as we discover, by pressure, the transformation into the amorphous phase is electronic in origin. Correlations between conductivity, total system energy, and local atomic coordination revealed by experiments and long time ab initio simulations show that the structural reorganization into the amorphous state is driven by opening of an energy gap in the electronic density of states. The electronic driving force behind the phase change has the potential to change the interconversion paradigm in this material class.

dc.publisherNational Academy of Sciences
dc.titleEvidence for electronic gap-driven metal-semiconductor transition in phase-change materials
dc.typeJournal Article
dcterms.source.volume106
dcterms.source.number27
dcterms.source.startPage10907
dcterms.source.endPage10911
dcterms.source.issn00278424
dcterms.source.titleProceedings of the National Academy of Sciences of USA
curtin.accessStatusOpen access via publisher


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record