Analytical solution for the spread of epidemic diseases in community clustered network
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by/4.0/
Collection
Abstract
We present a bond percolation model for community clustered networks with an arbitrarily specified joint degree distribution. Our model is based on the Probability Generating Function (PGF) method for multitype networks, but incorporate the free-excess degree distribution, which makes it applicable for clustered networks. In the context of contact network epidemiology, our model serves as a special case of community clustered networks which are more appropriate for modelling the disease transmission in community networks with clustering effects. Beyond the percolation threshold, we are able to obtain the probability that a randomly chosen community-$i$ node leads to the giant component. The probability refers to the probability that an individual in a community will be affected from the infective disease. Besides that, we also establish method to calculate the size of the giant component and the average small-component size (excluding the giant component). When the clustering effect is taken into account through the free-excess degree distribution, the model shows that the clustering effect will decrease the size of the giant component. In short, our model enables one to carry out numerical calculations to simulate the disease transmission in community networks with different community structure effects and clustering effects.
Related items
Showing items related by title, author, creator and subject.
-
Li, Yanrong (2009)Clustering and association rules mining are two core data mining tasks that have been actively studied by data mining community for nearly two decades. Though many clustering and association rules mining algorithms have ...
-
Bonafede, A.; Intema, Hubertus; Brüggen, M.; Vazza, F.; Basu, K.; Sommer, M.; Ebeling, H.; De Gasperin, F.; Röttgering, H.; Van Weeren, R.; Cassano, R. (2015)Radio haloes are synchrotron radio sources detected in some massive galaxy clusters. Their size of Mpc indicates that (re)acceleration processes are taking place in the host cluster. X-ray catalogues of galaxy clusters ...
-
Alizadeh, B.; Najjari, S.; Kadkhodaie, Ali (2012)Intelligent and statistical techniques were used to extract the hidden organic facies from well log responses in the Giant South Pars Gas Field, Persian Gulf, Iran. Kazhdomi Formation of Mid-Cretaceous and Kangan-Dalan ...