Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Origin of low frequency inductive impedance loops of O2 reduction reaction of solid oxide fuel cells

    Access Status
    Fulltext not available
    Authors
    Chen, Kongfa
    Ai, Na
    Jiang, San Ping
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Chen, K. and Ai, N. and Jiang, S.P. 2016. Origin of low frequency inductive impedance loops of O2 reduction reaction of solid oxide fuel cells. Solid State Ionics. 291: pp. 33-41.
    Source Title
    Solid State Ionics
    DOI
    10.1016/j.ssi.2016.04.021
    ISSN
    0167-2738
    School
    Department of Chemical Engineering
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150102025
    http://purl.org/au-research/grants/arc/DP150102044
    URI
    http://hdl.handle.net/20.500.11937/41879
    Collection
    • Curtin Research Publications
    Abstract

    Inductive impedance loop at low frequencies on electrochemical impedance spectroscopy curves is a common phenomenon in electrochemical reactions such as fuel cells. Here, we study the occurrence of low frequency inductive impedance loops and their evolution for the oxygen reduction reaction on Gd0.2Ce0.8O1.9 infiltrated La0.8Sr0.2MnO3 (GDC-LSM), GDC infiltrated Pt (GDC-Pt) and mixed ionic and electronic conducting (MIEC) La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathodes under solid oxide fuel cells (SOFCs) operation conditions. The incorporation of GDC nanoparticles (NPs) substantially enhances the electrochemical activity of LSM and Pt electrodes with the concomitant occurrence of an inductive impedance loop at low frequencies. However, the low frequency impedance loop disappears for the GDC-LSM with GDC NPs larger than 41 nm or after polarization at 200 mA cm− 2 for more than 60 min. In the case of LSCF electrode the low frequency inductive loop transfers to capacitive arc after polarization for 30 min. The occurrence of low frequency inductive loops is closely related to the electrode electrocatalytic activity and microstructure and is primarily determined by the ability of the electrode materials to supply atomic oxygen for the reaction at the interface. A mechanism of competitive atomic oxygen supply and dissociative oxygen adsorption and diffusion is proposed for the occurrence of the inductive loops at low frequencies for the O2 reduction reaction of SOFCs.

    Related items

    Showing items related by title, author, creator and subject.

    • Identification of oxygen reduction processes at (La,Sr)MnO3 electrode/La9.5Si6O26.25 apatite electrolyte interface of solid oxide fuel cells
      Cao, X.; Jiang, San Ping (2013)
      Oxygen reduction reaction of (La,Sr)MnO3 (LSM) cathode on La9.5Si6O26.25 apatite (LSO) electrolyte is studied over the temperature range 750–900 °C and the oxygen partial pressure range 0.01–1 atm by electrochemical ...
    • Oxygen reduction reaction at (La,Sr) (Co,Fe)O3-d electrode/La9.5Si6O26.25 apatite electrolyte interface of solid oxide fuel cells
      Cao, X.; Jiang, San Ping (2015)
      © 2015 Hydrogen Energy Publications, LLC. Oxygen reduction reaction (ORR) of La0.8Sr0.2Co0.5Fe0.5O3-d (LSCF) cathode on La9.5Si6O26.25 (LSO) apatite electrolyte is studied by electrochemical impedance spectroscopy over ...
    • BaCo0.6Fe0.3Sn0.1O3-δ perovskite as a new superior oxygen reduction electrode for intermediate-to-low temperature solid oxide fuel cells
      Qian, B.; Chen, Y.; Tade, Moses; Shao, Zongping (2014)
      BaCo0.6Fe0.3Sn0.1O3−δ (BCFSn631) is evaluated as an oxygen reduction electrode for intermediate-to-low temperature solid oxide fuel cells (SOFCs). XRD and HR-TEM analysis demonstrate that it is in a simple perovskite phase ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.