Performance and stability of (La,Sr)MnO3-Y2O3-ZrO2 composite oxygen electrodes under solid oxide electrolysis cell operation conditions
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
The electrochemical performance and stability of (La,Sr)MnO3–Y2O3–ZrO2 (LSM-YSZ) composite oxygen electrodes is studied in detail under solid oxide electrolysis cells (SOECs) operation conditions. The introduction of YSZ electrolyte phase to form an LSM-YSZ composite oxygen electrode substantially enhances the electrocatalytic activity for oxygen oxidation reaction. However, the composite electrode degrades significantly under SOEC mode tested at 500 mA cm−2 and 800 °C. The electrode degradation is characterized by deteriorated surface diffusion and oxygen ion exchange and migration processes. The degradation in electrode performance and stability is most likely associated with the breakup of LSM grains and formation of LSM nanoparticles at the electrode/electrolyte interface, and the formation of nano-patterns on YSZ electrolyte surface under the electrolysis polarization conditions. The results indicate that it is important to minimize the direct contact of LSM particles and YSZ electrolyte at the interface in order to prevent the detrimental effect of the LSM nanoparticle formation on the performance and stability of LSM-based composite oxygen electrodes.
Related items
Showing items related by title, author, creator and subject.
-
Chen, K.; Hyodo, J.; Dodd, A.; Ai, N.; Ishihara, T.; Jian, L.; Jiang, San Ping (2015)The effect of the presence of an Fe–Cr alloy metallic interconnect on the performance and stability of La0.8Sr0.2MnO3 (LSM) oxygen electrodes is studied for the first time under solid oxide electrolysis cell (SOEC) operating ...
-
Ai, N.; He, S.; Li, N.; Zhang, Qi; Rickard, William; Chen, K.; Zhang, T.; Jiang, San Ping (2018)Active and stable oxygen electrode is probably the most important in the development of solid oxide electrolysis cells (SOECs) technologies. Herein, we report the successful development of mixed ionic and electronic ...
-
He, Z.; Zhang, L.; He, S.; Ai, N.; Chen, K.; Shao, Y.; Jiang, San Ping (2018)Reversing the direction of polarization current is essential for reversible solid oxide cells technologies, but its effect on cobaltite based perovskite oxygen electrodes is largely unknown. Herein, we report the operating ...