Cyclic polarization enhances the operating stability of La0.57Sr0.38Co0.18Fe0.72Nb0.1O3-δ oxygen electrode of reversible solid oxide cells
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
Reversing the direction of polarization current is essential for reversible solid oxide cells technologies, but its effect on cobaltite based perovskite oxygen electrodes is largely unknown. Herein, we report the operating stability and microstructure at the electrode/electrolyte interface of La0.57Sr0.38Co0.18Fe0.72Nb0.1O3-d (LSCFN) oxygen electrodes assembled on barrier-layer-free Y2O3–ZrO2 electrolyte under cyclic anodic/cathodic polarization mode at 0.5 A cm-2 and 750 °C. During the cyclic polarization, the electrocatalytic activity of LSCFN electrode is drastically deteriorated in cathodic mode, but the performance loss is largely recoverable in anodic mode. This is due to the fact that the surface segregation of Sr and accumulation at the electrode/electrolyte interface by cathodic polarization can be remarkably mitigated by anodic polarization. The time period in each cycle plays a key role in determining the accumulation of Sr species at the electrode/electrolyte interface. A full cell operating in a time period of 12 h fuel-cell/12 h electrolysis is reversible for a duration of 240 h, in contrast to the performance degradation in a shorter time period of 4 h fuel cell/4 h electrolysis. The present study sheds lights on applying cobaltite based perovskite oxygen electrodes on barrier-layer-free YSZ electrolyte for reliable solid oxide cells.
Related items
Showing items related by title, author, creator and subject.
-
Chen, M.; Cheng, Y.; He, S.; Ai, N.; Veder, Jean-Pierre; Rickard, William; Saunders, M.; Chen, K.; Zhang, T.; Jiang, San Ping (2018)Bismuth oxide is as an active promoter in enhancing the ionic conductivity and electrocatalytic activity of manganite oxygen electrodes of solid oxide cells, but there are very limited reports on the formation and evolution ...
-
Ai, N.; He, S.; Li, N.; Zhang, Qi; Rickard, William; Chen, K.; Zhang, T.; Jiang, San Ping (2018)Active and stable oxygen electrode is probably the most important in the development of solid oxide electrolysis cells (SOECs) technologies. Herein, we report the successful development of mixed ionic and electronic ...
-
Chen, Kongfa; Jiang, San Ping (2011)The delamination behavior of La0.8Sr0.2MnO3 (LSM) oxygen electrode of solid oxide electrolysis cell (SOEC) is studied in detail under anodic current passage of 500 mA cm2 and 800C. The delamination or failure of LSM oxygen ...