Show simple item record

dc.contributor.authorFerris, C.
dc.contributor.authorDavy, A.
dc.contributor.authorOliver, Richard
dc.contributor.authorHewitt, G.
dc.date.accessioned2017-01-30T15:02:16Z
dc.date.available2017-01-30T15:02:16Z
dc.date.created2010-11-12T06:35:57Z
dc.date.issued1993
dc.identifier.citationFERRIS C, DAVY AJ, OLIVER RP & HEWITT GM (1993) Native oak chloroplasts reveal an ancient divide across Europe. Molecular Ecology 2 337-344
dc.identifier.urihttp://hdl.handle.net/20.500.11937/42806
dc.identifier.doi10.1111/j.1365-294X.1993.tb00026.x
dc.description.abstract

Glacial refugia and postglacial migration are major factors responsible for the present patterns of genetic variation we see in natural populations. Traditionally postglacial history has been inferred from fossil data, but new molecular techniques permit historical information to be gleaned from present populations. The chloroplast tRNALeu1 intron contains regions which have been highly conserved over a billion years of chloroplast evolution. Surprisingly, in one of these regions which has remained invariant for all photosynthetic organisms so far studied, we have found intraspecific site polymorphism. This polymorphism occurs in two European oaks, Quercus robur and Q. petraea, indicating hybridisation and introgression between them. Two distinct chloroplast types occur and are distributed geographically as eastern and western forms suggesting that these oaks are each derived from at least two separate glacial refugia.

dc.titleNative oak chloroplasts reveal an ancient divide across Europe
dc.typeJournal Article
curtin.note

A copy of this item may be available from Professor Richard Oliver

curtin.note

Email: Richard.oliver@curtin.edu.au

curtin.accessStatusFulltext not available
curtin.facultyDepartment of Environmental & Agriculture
curtin.facultySchool of Agriculture and Environment
curtin.facultyFaculty of Science and Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record