Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
Copyright © ICE Publishing, all rights reserved
Collection
Abstract
This study proposes and describes a novel approach for cementing sandy soils in marine environments by modifying the promising technique of microbially induced carbonate precipitation (MICP). In contrast to the usual MICP technique described in the literature, the method proposed herein relies on the calcium ions dissolved in seawater as the sole source of calcium for calcite formation. This proposed method involves flushing high-salinity-tolerant, urease-active bacteria followed by a mixture of urea and seawater through a porous sandy soil, leading to bacterial carbonate release from the urease reaction and precipitation of insoluble and semi-soluble carbonate salts including calcium carbonate and magnesium carbonate trihydrate. This precipitation method resulted in a physical stabilisation of sand that reached an unconfined compressive strength of up to 300 kPa, which is about two-fold higher (with same amount of crystals produced) than that of the MICP treatment in which highly concentrated calcium and urea solutions are used. Permeability was retained at about 30% for all MICP-treated samples, suggesting good drainage ability. This new exploration of MICP technology provides a high potential for using bio-cementation in marine environments, for applications such as mitigation of submarine sediment liquefaction and prevention of beach sand erosion and cliffs scouring.
Related items
Showing items related by title, author, creator and subject.
-
Cheng, L.; Shahin, Mohamed; Cord-Ruwisch, R. (2014)This study proposes and describes a novel approach for cementing sandy soils in marine environments by modifying the promising technique of microbially induced carbonate precipitation (MICP). In contrast to the usual MICP ...
-
Murugan, Raja; Suraishkumar, G.K.; Mukherjee, Abhijit; Dhami, Navdeep (2021)Microbially induced calcium carbonate precipitation (MICP) process utilising the biogeochemical reactions for low energy cementation has recently emerged as a potential technology for numerous engineering applications. ...
-
Dhami, N.; Alsubhi, W.; Watkin, E.; Mukherjee, Abhijit (2017)Microbially-induced CaCO 3 precipitation (MICP) is a naturally occurring process wherein durable carbonates are formed as a result of microbial metabolic activities. In recent years, MICP technology has been widely ...