Show simple item record

dc.contributor.authorCheng, Liang
dc.contributor.authorShahin, Mohamed
dc.contributor.authorCord-Ruwisch, R.
dc.date.accessioned2017-01-30T15:04:47Z
dc.date.available2017-01-30T15:04:47Z
dc.date.created2016-10-11T19:30:19Z
dc.date.issued2014
dc.identifier.citationCheng, L. and Shahin, M. and Cord-Ruwisch, R. 2014. Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments. Géotechnique. 64 (12): pp. 1010-1013.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/43106
dc.identifier.doi10.1680/geot.14.T.025
dc.description.abstract

This study proposes and describes a novel approach for cementing sandy soils in marine environments by modifying the promising technique of microbially induced carbonate precipitation (MICP). In contrast to the usual MICP technique described in the literature, the method proposed herein relies on the calcium ions dissolved in seawater as the sole source of calcium for calcite formation. This proposed method involves flushing high-salinity-tolerant, urease-active bacteria followed by a mixture of urea and seawater through a porous sandy soil, leading to bacterial carbonate release from the urease reaction and precipitation of insoluble and semi-soluble carbonate salts including calcium carbonate and magnesium carbonate trihydrate. This precipitation method resulted in a physical stabilisation of sand that reached an unconfined compressive strength of up to 300 kPa, which is about two-fold higher (with same amount of crystals produced) than that of the MICP treatment in which highly concentrated calcium and urea solutions are used. Permeability was retained at about 30% for all MICP-treated samples, suggesting good drainage ability. This new exploration of MICP technology provides a high potential for using bio-cementation in marine environments, for applications such as mitigation of submarine sediment liquefaction and prevention of beach sand erosion and cliffs scouring.

dc.publisherI C E Publishing
dc.titleBio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments
dc.typeJournal Article
dcterms.source.volume64
dcterms.source.number12
dcterms.source.startPage1010
dcterms.source.endPage1013
dcterms.source.issn0016-8505
dcterms.source.titleGeotechnique
curtin.note

Copyright © ICE Publishing, all rights reserved

curtin.departmentDepartment of Civil Engineering
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record