Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells

    Access Status
    Fulltext not available
    Authors
    Tang, H.
    Pan, M.
    Jiang, San ping
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Tang, Haolin and Pan, Mu and Jiang, San Ping. 2011. Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells. Dalton Tranactions. 40: pp. 5220-5227.
    Source Title
    Dalton Tranactions
    DOI
    10.1039/c1dt10150a
    ISSN
    1477-9226
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/43222
    Collection
    • Curtin Research Publications
    Abstract

    A highly ordered inorganic electrolyte based on 12-tungstophosphoric acid (H3PW12O40, abbreviated as HPW or PWA)–silica mesoporous nanocomposite was synthesized through a facile one-step self-assembly between the positively charged silica precursor and negatively charged PW12O40 3- species. The self-assembled HPW–silica nanocomposites were characterized by small-angle XRD, TEM, nitrogen adsorption–desorption isotherms, ion exchange capacity, proton conductivity and solid-state 31P NMR. The results show that highly ordered and uniform nanoarrays with long-range order are formed when the HPW content in the nanocomposites is equal to or lower than 25 wt%. The mesoporous structures/textures were clearly presented, with nanochannels of 3.2–3.5 nm in diameter. The 31P NMR results indicates that there are ( SiOH2 +)(H2PW12O40 -) species in the HPW–silica nanocomposites. A HPW–silica (25/75 w/o) nanocomposite gave an activation energy of 13.0 kJ mol-1 and proton conductivity of 0.076 S cm-1 at 100 ◦C and 100 RH%, and an activation energy of 26.1 kJ mol-1 and proton conductivity of 0.05 S cm-1 at 200 ◦C with no external humidification. A fuel cell based on a 165 mm thick HPW–silica nanocomposite membrane achieved a maximum power output of 128.5 and 112.0 mW cm-2 for methanol and ethanol fuels, respectively, at 200 ◦C. The high proton conductivity and good performance demonstrate the excellent water retention capability and great potential of the highly ordered HPW–silica mesoporous nanocomposites as high-temperature proton exchange membranes for direct alcohol fuel cells (DAFCs).

    Related items

    Showing items related by title, author, creator and subject.

    • Characterization of High-Temperature Proton-Exchange Membranes Based on Phosphotungstic Acid Functionalized Mesoporous Silica Nanocomposites for Fuel Cells
      Zeng, J.; Jiang, San Ping (2011)
      The synthesis and characteristics of high-temperature proton-exchange membranes based on mesoporous silica nanocomposite functionalized with phosphotungstic acid (HPW) were investigated in detail for applications in ...
    • Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells
      Zeng, J.; Zhou, Y.; Li, L.; Jiang, San Ping (2011)
      A novel proton exchange membrane using phosphotungstic acid (HPW) as proton carrier and cubic bicontinuous Ia3d mesoporous silica (meso-silica) as framework material is successfully developed as proton exchange membranes ...
    • Correlation between proton conductivity, thermal stability and structural symmetries in novel HPW-meso-silica nanocomposite membranes and their performance in direct methanol fuel cells
      Zeng, J.; Shen, P.; Lu, S.; Xiang, Y.; Li, L.; De Marco, Roland; Jiang, San Ping (2012)
      The intrinsic relationship between proton conductivity, thermal stability and structural symmetries of phosphotungstic acid (HPW)-functionalized mesoporous silica (HPW-meso-silica) membrane was investigated with mesoporous ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.