Show simple item record

dc.contributor.authorLim, Hann
dc.contributor.authorSeng, K.
dc.contributor.authorAng, L.
dc.identifier.citationLim, H. and Seng, K. and Ang, L. 2010. Intra color-shape classification for traffic sign recognition, pp. 642-647.

This paper presents a novel traffic sign recognition system comprising of: (i) Color/shape classification, (ii) Pictogram extraction, (iii) Features selection and, (iv) Lyapunov Theory-based Radial Basis Function neural network (RBFNN). In the proposed system, traffic signs are first segmented and classified with regard to its unique color and shape in order to partition a large set of data into smaller subclasses. Within these subclasses, all redundant information except the pictogram is discarded for feature selection since the pictogram contains critical information for road users. Principle Component Analysis (PCA) is applied to extract salient points for traffic sign dimensionality reduction. This is followed by the Fisher's Linear Discriminant (FLD) to further obtain the most discriminant features. These features are fed into RBFNN for training with a proposed weight updating scheme based on Lyapunov stability theory. The performance of the proposed system is evaluated with Malaysian road signs with promising recognition rate. ©2010 IEEE.

dc.titleIntra color-shape classification for traffic sign recognition
dc.typeConference Paper
dcterms.source.titleICS 2010 - International Computer Symposium
dcterms.source.seriesICS 2010 - International Computer Symposium
curtin.departmentCurtin Sarawak
curtin.accessStatusFulltext not available

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record