Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Simultaneous and rapid dye removal in the presence of ultrasound waves and a nano structured material: Experimental design methodology, equilibrium and kinetics

    Access Status
    Fulltext not available
    Authors
    Sharifpour, E.
    Haddadi, H.
    Ghaedi, M.
    Asfaram, A.
    Wang, Shaobin
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Sharifpour, E. and Haddadi, H. and Ghaedi, M. and Asfaram, A. and Wang, S. 2016. Simultaneous and rapid dye removal in the presence of ultrasound waves and a nano structured material: Experimental design methodology, equilibrium and kinetics. RSC Advances. 6 (70): pp. 66311-66319.
    Source Title
    RSC Advances
    DOI
    10.1039/c6ra13286c
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/43739
    Collection
    • Curtin Research Publications
    Abstract

    © 2016 The Royal Society of Chemistry.Tin sulfide nanoparticles loaded on activated carbon (SnS-AC) were prepared and characterized by FE-SEM, XRD, FT-IR and EDX. Central composite design (CCD) by response surface methodology (RSM) was employed to investigate the influences of process parameters like adsorbent mass, ultrasound time, initial safranin O (SO) and methylene blue (MB) concentrations at pH of 8.0 on the simultaneous adsorption of the two dyes on the SnS-AC. Analysis of variance (ANOVA) and t-test statistics were used to check the significance of the independent variables and their interactions on the adsorption efficiency. The predicted values were in good agreement with the experimental data MB (R2 = 0.994) and SO (R2 = 0.984), revealing the suitability of the constructed equations and CCD success in optimizing the adsorption process. Experimental results demonstrate high applicability and efficiency of dye removal by SnS-AC with more than 95% over a very short time (12 mg L-1 of each dye, 0.025 g of adsorbent at pH of 8.0). The adsorption for single and binary solutions of SO and MB followed the Freundlich model and the maximum adsorption capacities for MB and SO were estimated to be 71.1 and 67.3 mg g-1, respectively.

    Related items

    Showing items related by title, author, creator and subject.

    • Treatment of oily and dye wastewater with modified barley straw
      Che Ibrahim, Shariff (2010)
      Barley straw, an agricultural byproduct, was identified as a potential adsorbent material for wastewater treatment as it offers various advantages such as abundant availability at no or very low cost, little processing ...
    • Simultaneous removal process for humic acids and metal ions by adsorption
      Terdkiatburana, Thanet (2007)
      Humic substances are macromolecules that naturally occur in all environments in which vegetation matter are present. In general, humic acid is part of humic substances which form the major fraction of the dissolved organic ...
    • An investigation of polyacrylate adsorption onto hematite
      Kirwan, Luke J. (2002)
      For the majority of tailings substrates, flocculant adsorption proceeds through hydrogen bonding of the amide functionalities with neutral surfaces. However, flocculation of Bayer process residue solids takes place in ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.