A neighboring extremal solution for an optimal switched impulsive control problem
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
This paper presents a neighboring extremal solution for a class of optimal switched impulsive control problems with perturbations in the initial state, terminal condition and system's parameters. The sequence of mode's switching is pre-specified, and the decision variables, i.e. the switching times and parameters of the system involved, have inequality constraints. It is assumed that the active status of these constraints is unchanged with the perturbations. We derive this solution by expanding the necessary conditions for optimality to first-order and then solving the resulting multiple-point boundary-value problem by the backward sweep technique. Numerical simulations are presented to illustrate this solution method.
Related items
Showing items related by title, author, creator and subject.
-
Loxton, Ryan Christopher (2010)In this thesis, we develop numerical methods for solving five nonstandard optimal control problems. The main idea of each method is to reformulate the optimal control problem as, or approximate it by, a nonlinear programming ...
-
Woon, Siew Fang (2009)Optimal control problems arise in many applications, such as in economics, finance, process engineering, and robotics. Some optimal control problems involve a control which takes values from a discrete set. These problems ...
-
Liu, Chongyang; Gong, Z.; Teo, Kok Lay; Sun, Jie; Caccetta, Louis (2017)This paper considers optimal control of glycerol producing 1,3-propanediol (1,3-PD) via microbial fed-batch fermentation. The fed-batch process is formulated as a nonlinear switched time-delay system. In general, the ...