Show simple item record

dc.contributor.authorBaddeley, Adrian
dc.contributor.authorChang, Y.
dc.contributor.authorSong, Y.
dc.contributor.authorTurner, R.
dc.date.accessioned2017-01-30T15:11:31Z
dc.date.available2017-01-30T15:11:31Z
dc.date.created2015-10-29T04:09:49Z
dc.date.issued2012
dc.identifier.citationBaddeley, A. and Chang, Y. and Song, Y. and Turner, R. 2012. Nonparametric estimation of the dependence of a spatial point process on spatial covariates. Statistics and its Interface. 5 (2): pp. 221-236.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/44007
dc.identifier.doi10.4310/SII.2012.v5.n2.a7
dc.description.abstract

In the statistical analysis of spatial point patterns, it is often important to investigate whether the point pattern depends on spatial covariates. This paper describes nonparametric (kernel and local likelihood) methods for estimating the effect of spatial covariates on the point process intensity. Variance estimates and confidence intervals are provided in the case of a Poisson point process. Techniques are demonstrated with simulated examples and with applications to exploration geology and forest ecology.

dc.publisherINT PRESS BOSTON, INC
dc.titleNonparametric estimation of the dependence of a spatial point process on spatial covariates
dc.typeJournal Article
dcterms.source.volume5
dcterms.source.number2
dcterms.source.startPage221
dcterms.source.endPage236
dcterms.source.issn1938-7989
dcterms.source.titleStatistics and its Interface
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record