The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions
Access Status
Authors
Date
2009Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The mechanism of re-equilibration of albite in a hydrothermal fluid has been investigated experimentally using natural albite crystals in an aqueous KCl solution enriched in 18O at 600°C and 2 kbars pressure. The reaction is pseudomorphic and produces a rim of K-feldspar with a sharp interface on a nanoscale which moves into the parent albite with increasing reaction time. Transmission electron microscopy (TEM) diffraction contrast and X-ray powder diffraction (XRD) show that the K-feldspar has a very high defect concentration and a disordered Al, Si distribution, compared to the parent albite. Raman spectroscopy shows a frequency shift of the Si-O-Si bending vibration from ~476 cm-1 in K-feldspar formed in normal 16O aqueous solution to ~457 cm-1 in the K-feldspar formed in 18O-enriched solution, reflecting a mass-related frequency shift due to a high enrichment of 18O in the K-feldspar silicate framework. Raman mapping of the spatial distribution of the frequency shift, and hence 18O content, compared with major element distribution maps, show a 1:1 correspondence between the reaction rim formed by the replacement of albite by K-feldspar, and the oxygen isotope re-equilibration. The textural and chemical characteristics as well as the kinetics of the replacement of albite by K-feldspar are consistent with an interface-coupled dissolution-reprecipitation mechanism. © Springer-Verlag 2008.
Related items
Showing items related by title, author, creator and subject.
-
Yu, Z.; Liu, L.; Liu, Keyu; Yang, S.; Yang, Y. (2015)CO2 geological sequestration (CGS) in depleted or high-water-cut oil reservoirs is a viable option for reducing anthropogenic CO2 emissions and enhancing oil recovery. The Upper Cretaceous Qingshankou Formation in the ...
-
McLaren, S.; Reddy, Steven (2008)The ability to quantify feldspar microstructure using the electron backscatter diffraction (EBSD) method has direct application in the study of rock deformation and strain kinematics. However, automated EBSD analysis of ...
-
Reddy, Steven; Potts, G.; Kelley, S. (2001)Detailed field and microstructural studies have been combined with high spatial resolution ultra-violet laser 40Ar/39Ar dating of naturally deformed K-feldspar to investigate the direct relationship between deformation-related ...