Show simple item record

dc.contributor.authorKadkhodaie Ilkhchi, A.
dc.contributor.authorRezaee, M. Reza
dc.contributor.authorRahimpour-Bonab, H.
dc.contributor.authorChehrazi, A.
dc.date.accessioned2017-01-30T15:18:10Z
dc.date.available2017-01-30T15:18:10Z
dc.date.created2010-02-15T20:01:52Z
dc.date.issued2009
dc.identifier.citationKadkhodaie Ilkhchi, Ali and Rezaee, M. Reza and Rahimpour-Bonab, Hossain and Chehrazi, Ali. 2009. Petrophysical data prediction from seismic attributes using committee fuzzy inference system. Computers & Geosciences. 35 (12): pp. 2314-2330.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/45044
dc.identifier.doi10.1016/j.cageo.2009.04.010
dc.description.abstract

This study presents an intelligent model based on fuzzy systems for making aquantitative formulation between seismic attributes and petrophysical data. The proposed methodology comprises two major steps. Firstly, the petrophysical data, including water saturation (Sw) and porosity, are predicted from seismic attributes using various Fuzzy Inference Systems (FIS), including Sugeno (SFIS), Mamdani (MFIS) and Larsen (LFIS). Secondly, a Committee Fuzzy Inference System (CFIS) is constructed using a hybrid Genetic Algorithms-Pattern Search (GA-PS) technique. The inputs of the CFIS model are the output averages of theFIS petrophysical data. The methodology is illustrated using 3D seismic and petrophysical data of 11 wells of an Iranian offshore oil field in the Persian Gulf. The performance of the CFIS model is compared with a Probabilistic Neural Network (PNN). The results show that the CFIS method performed better than neural network, the best individual fuzzy model and a simple averaging method.

dc.publisherElsevier
dc.subjectseismic attributes
dc.subjectprobabilistic neural network
dc.subjectMamdani
dc.subjectpetrophysical data
dc.subjecthybrid genetic - algorithm-pattern search
dc.subjectLarsen
dc.subjectSugeno
dc.subjectCommittee fuzzy inference system
dc.titlePetrophysical data prediction from seismic attributes using committee fuzzy inference system
dc.typeJournal Article
dcterms.source.volume35
dcterms.source.startPage2314
dcterms.source.endPage2330
dcterms.source.issn00983004
dcterms.source.titleComputers & Geosciences
curtin.note

The link to the journal’s home page is:http://www.elsevier.com/wps/find/journaldescription.cws_home/622273/description#description. Copyright © 2009 Elsevier B.V. All rights reserved

curtin.accessStatusOpen access
curtin.facultyDepartment of Petroleum Engineering
curtin.facultySchool of Engineering
curtin.facultyFaculty of Science and Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record