Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Layer-Based Modelling of the Earth’s Gravitational Potential up to 10-km Scale in Spherical Harmonics in Spherical and Ellipsoidal Approximation

    Access Status
    Fulltext not available
    Authors
    Rexer, M.
    Hirt, C.
    Claessens, Sten
    Tenzer, R.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Rexer, M. and Hirt, C. and Claessens, S. and Tenzer, R. 2016. Layer-Based Modelling of the Earth’s Gravitational Potential up to 10-km Scale in Spherical Harmonics in Spherical and Ellipsoidal Approximation. Surveys in Geophysics. 37 (6): pp. 1035-1074.
    Source Title
    Surveys in Geophysics
    DOI
    10.1007/s10712-016-9382-2
    ISSN
    0169-3298
    School
    Department of Spatial Sciences
    URI
    http://hdl.handle.net/20.500.11937/4505
    Collection
    • Curtin Research Publications
    Abstract

    © 2016 Springer Science+Business Media Dordrecht. Global forward modelling of the Earth’s gravitational potential, a classical problem in geophysics and geodesy, is relevant for a range of applications such as gravity interpretation, isostatic hypothesis testing or combined gravity field modelling with high and ultra-high resolution. This study presents spectral forward modelling with volumetric mass layers to degree 2190 for the first time based on two different levels of approximation. In spherical approximation, the mass layers are referred to a sphere, yielding the spherical topographic potential. In ellipsoidal approximation where an ellipsoid of revolution provides the reference, the ellipsoidal topographic potential (ETP) is obtained. For both types of approximation, we derive a mass layer concept and study it with layered data from the Earth2014 topography model at 5-arc-min resolution. We show that the layer concept can be applied with either actual layer density or density contrasts w.r.t. a reference density, without discernible differences in the computed gravity functionals. To avoid aliasing and truncation errors, we carefully account for increased sampling requirements due to the exponentiation of the boundary functions and consider all numerically relevant terms of the involved binominal series expansions. The main outcome of our work is a set of new spectral models of the Earth’s topographic potential relying on mass layer modelling in spherical and in ellipsoidal approximation. We compare both levels of approximations geometrically, spectrally and numerically and quantify the benefits over the frequently used rock-equivalent topography (RET) method. We show that by using the ETP it is possible to avoid any displacement of masses and quantify also the benefit of mapping-free modelling. The layer-based forward modelling is corroborated by GOCE satellite gradiometry, by in-situ gravity observations from recently released Antarctic gravity anomaly grids and degree correlations with spectral models of the Earth’s observed geopotential. As the main conclusion of this work, the mass layer approach allows more accurate modelling of the topographic potential because it avoids 10–20-mGal approximation errors associated with RET techniques. The spherical approximation is suited for a range of geophysical applications, while the ellipsoidal approximation is preferable for applications requiring high accuracy or high resolution.

    Related items

    Showing items related by title, author, creator and subject.

    • The relation between degree-2160 spectral models of Earth’s gravitational and topographic potential: a guide on global correlation measures and their dependency on approximation effects
      Hirt, C.; Rexer, M.; Dewan, Ashraf; Rummel, R. (2017)
      © 2017 Springer-Verlag Berlin HeidelbergComparisons between high-degree models of the Earth’s topographic and gravitational potential may give insight into the quality and resolution of the source data sets, provide ...
    • Ellipsoidal topographic potential: New solutions for spectral forward gravity modeling of topography with respect to a reference ellipsoid
      Claessens, Sten; Hirt, Christian (2013)
      Forward gravity modeling in the spectral domain traditionally relies on spherical approximation. However, this level of approximation is insufficient for some present day high-accuracy applications. Here we present two ...
    • A new degree-2190 (10 km resolution) gravity field model for Antarctica developed from GRACE, GOCE and Bedmap2 data
      Hirt, Christian; Rexer, M.; Scheinert, M.; Pail, R.; Claessens, Sten; Holmes, S. (2015)
      The current high-degree global geopotential models EGM2008 and EIGEN-6C4 resolve gravity field structures to ~10 km spatial scales over most parts of the of Earth’s surface. However, a notable exception is continental ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.