Transformation frequencies are enhanced and vector DNA is targeted during retransformation of Leptosphaeria maculans, a fungal plant pathogen
Access Status
Authors
Date
1992Type
Metadata
Show full item recordCitation
Faculty
Remarks
A copy of this item may be available from Professor Richard Oliver
Email: Richard.oliver@curtin.edu.au
Collection
Abstract
Leptosphaeria maculans, a fungal pathogen of Brassica spp., was successfully transformed with the vector pAN8-1, encoding phleomycin resistance. Protoplasts of a vigorous Phleor transformant were then retransformed using the partially homologous vector, pAN7-1 which encodes hygromycin B resistance. Retransformation of this strain to hygromycin resistance occurred at frequencies that were consistently twofold higher than with the original recipient strain. Linearised pAN7-1 DNA transformed phleomycin-resistant protoplasts at higher frequencies still. All the transformants that were tested retained a phleomycin-resistant phenotype (20/20). Molecular analysis of five transformants generated with circular pAN7-1 DNA indicated that in four cases the pAN7-1 vector had integrated into pAN8-1 sequences. These results suggest that transformation frequencies in L. maculans are limited by the ability of vector DNA to integrate into the genome. Hence, construction of strains with target sites for integration may prove to be a generally useful method for improving transformation frequencies of poorly characterised filamentous fungi, particularly when using heterologous vectors. This would greatly facilitate the identification of genes by transfer of gene libraries and the standardisation of chromosomal location effects in studies of expression of nested promoter deletions.
Related items
Showing items related by title, author, creator and subject.
-
Zhang, M.; Jiang, S.; Zheng, J.; Zheng, Z.; Li, Xingjiang; Pan, L.; Luo, S. (2015)To construct a system of genetic transformation suitable for Rhizopus oryzae, we constructed a single-exchange vector pBS-hygro carrying hygromycin B resistance gene (hph) as its selective marker using gene splicing by ...
-
Punt, P.; Oliver, Richard; Dingemanse, M.; Pouwels, P.; Van Den Hondel, C. (1987)A new, heterologous, dominant marker for selection of Aspergillus transformants is described. This marker is based on the Escherichia coli hygromycin B (HmB) phosphotransferase gene (hph). Expression of the hph gene is ...
-
Lumentut, Mikail; Howard, Ian (2010)The exploitation of usable power from vibration environments shows potential benefit for recharging batteries and powering wireless transmission. In this paper, we present a novel technique for simulating the electromechanical ...