Visual tracking of multiple targets by Multi-Bernoulli filtering of background subtracted image data
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISBN
Collection
Abstract
Most visual multi-target tracking techniques in the literature employ a detection routine to map the image data to point measurements that are usually further processed by a filter. In this paper, we present a visual tracking technique based on a multi-target filtering algorithm that operates directly on the image observations and does not require any detection nor training patterns. Instead, we use the recent history of image data for non-parametric background subtraction and apply an efficient multi-target filtering technique, known as the multi-Bernoulli filter, on the resulting grey scale image data. In our experiments, we applied our method to track multiple people in three video sequences from the CAVIAR dataset. The results show that our method can automatically track multiple interacting targets and quickly finds targets entering or leaving the scene.
Related items
Showing items related by title, author, creator and subject.
-
Hoseinnezhad, R.; Vo, Ba-Ngu; Vo, Ba Tuong (2013)This correspondence presents a novel method for simultaneous tracking of multiple non-stationary targets in video. Our method operates directly on the video data and does not require any detection. We propose a multi-target ...
-
Kim, Du Yong (2018)© 2018 ISIF This paper proposes a robust multi-target tracking algorithm for uncertainty in dynamic motion modeling. To address this issue, the multi-target tracking problem is formulated under random finite set (RFS) ...
-
Vo, Ba Tuong; Vo, Ba-Ngu (2018)© 2018 ISIF This paper extends the generalized labeled multi-Bernoulli (GLMB) tracking filter to a batch multi-target tracker. In a labeled random finite set formulation, a multi-target tracking filter propagates the ...