A novel numerical model approach for examining ship berthing impact on floating piers
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
Copyright © 2015 School of Engineering, Taylor’s University
Collection
Abstract
This paper presents the results of an investigation into the impact of ship berthing upon floating piers using highly advanced numerical software Abaqus. The ship and floating piers were modeled as solid bodies. For the first time, the effect of soil on the total energy absorption of the system was considered using both elastic and elastic-perfectly plastic soil models. First the results for the elastic soil model were compared to and verified by the existing literature using a spring soil model.Then a continuum soil model was utilized instead of a spring soil model, with the results showing 27% higher energy absorption compared to the spring model. The investigation also considered a model with soil as an elastic-perfectly plastic material, being more aligned with the soil material’s real behavior. With this model the results produced 1% more energy absorption as the soil did not reach plastic failure.
Related items
Showing items related by title, author, creator and subject.
-
Sha, Y.; Hao, Hong (2013)Bridge structures across navigable waterways are vulnerable to barge collisions. To protect the bridge structure, bridge piers should be specially designed to resist barge impact load. In order to quantify the impact load, ...
-
Sha, Y.; Hao, Hong (2015)Bridge piers are designed to withstand not only axial loads of superstructures and passingvehicles but also out-of-plane loads such as earthquake excitations and vessel impact loads.Vessel impact on bridge piers can lead ...
-
Sun, Z.; Wang, D.; Bi, Kaiming; Si, B. (2015)In the performance-based seismic bridge design, piers are expected to undergo large inelastic deformations during severe earthquakes, which in turn can result in large residual drift and concrete crack in the bridge piers. ...