Show simple item record

dc.contributor.authorVo, Ba Tuong
dc.contributor.authorVo, Ba-Ngu
dc.contributor.authorHoseinnezhad, R.
dc.contributor.authorMahler, R.
dc.date.accessioned2017-01-30T15:28:54Z
dc.date.available2017-01-30T15:28:54Z
dc.date.created2014-03-12T20:01:03Z
dc.date.issued2013
dc.identifier.citationVo, Ba-Tuong and Vo, Ba-Ngu and Hoseinnezhad, Reza and Mahler, Ronald P.S. 2013. Robust Multi-Bernoulli Filtering. IEEE Journal of Selected Topics in Signal Processing. 7 (3): pp. 399-409.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/46736
dc.identifier.doi10.1109/JSTSP.2013.2252325
dc.description.abstract

In Bayesian multi-target filtering knowledge of parameters such as clutter intensity and detection probability profile are of critical importance. Significant mismatches in clutter and detection model parameters results in biased estimates. In this paper we propose a multi-target filtering solution that can accommodate non-linear target models and an unknown non-homogeneous clutter and detection profile. Our solution is based on the multi-target multi-Bernoulli filter that adaptively learns non-homogeneous clutter intensity and detection probability while filtering.

dc.publisherInstitute of Electrical and Electronics Engineers
dc.titleRobust Multi-Bernoulli Filtering
dc.typeJournal Article
dcterms.source.volume7
dcterms.source.number3
dcterms.source.startPage399
dcterms.source.endPage409
dcterms.source.issn1932-4553
dcterms.source.titleIEEE Journal on Selected Topics in Signal Processing
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record