Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Esterification of bio-oil from mallee (Eucalyptus loxophleba ssp. gratiae) leaves with a solid acid catalyst: Conversion of the cyclic ether and terpenoids into hydrocarbons

    Access Status
    Fulltext not available
    Authors
    Hu, Xun
    Gunawan, Richard
    Mourant, Daniel
    Wang, Yi
    Lievens, Caroline
    Chaiwat, Weerawut
    Wu, L.
    Li, Chun-Zhu
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Hu, X. and Gunawan, R. and Mourant, D. and Wang, Y. and Lievens, C. and Chaiwat, W. and Wu, L. et al. 2012. Esterification of bio-oil from mallee (Eucalyptus loxophleba ssp. gratiae) leaves with a solid acid catalyst: Conversion of the cyclic ether and terpenoids into hydrocarbons. Bioresource Technology. 123: pp. 249-255.
    Source Title
    Bioresource Technology
    DOI
    10.1016/j.biortech.2012.07.073
    ISSN
    09608524
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/46770
    Collection
    • Curtin Research Publications
    Abstract

    Bio-oil from pyrolysis of mallee (Eucalyptus loxophleba ssp. gratiae) leaves differs from that obtained with wood by its content of cyclic ethers, terpenoids and N-containing organic compounds. Upgrading of the leaf bio-oil in methanol with a solid acid catalyst was investigated and it was found that the N-containing organics in the bio-oil lead to deactivation of the catalyst in the initial stage of exposure and have to be removed via employing high catalyst loading to allow the occurrence of other acid-catalysed reactions. Eucalyptol, the main cyclic ether in the bio-oil, could be converted into the aromatic hydrocarbon, p-cymene, through a series of intermediates including α-terpineol, terpinolene, and α-terpinene. Various steps such as ring-opening, dehydration, isomerisation, and aromatization were involved in the conversion of eucalyptol. The terpenoids in bio-oil could also be converted into aromatic hydrocarbons that can serve as starting materials for the synthesis of fine chemicals, via the similar processes.

    Related items

    Showing items related by title, author, creator and subject.

    • Transformation of bio-oil during pyrolysis and reforming
      Wang, Yi (2012)
      The pyrolysis of biomass is a very effective means of energy densification. With the bio-char returned to the field as a soil conditioner and for carbon bio-sequestration, bio-oil can be used in many ways, including being ...
    • Different reaction behaviours of the light and heavy components of bio-oil during the hydrotreatment in a continuous pack-bed reactor
      Gholizadeh, M.; Gunawan, Richard; Hu, Xun; Hasan, Md Mahmudul; Kersten, S.; Westerhof, R.; Chaitwat, W.; Li, Chun-Zhu (2016)
      This study aims to investigate the hydrotreatment of bio-oil in a continuous packed-bed reactor at around 375°C and 70 bar. The bio-oil was produced from the grinding pyrolysis of mallee wood in a grinding pyrolysis pilot ...
    • Acid-treatment of bio-oil in methanol: The distinct catalytic behaviours of a mineral acid catalyst and a solid acid catalyst
      Wu, L.; Hu, X.; Wang, Shuai; Mahmudul Hasan, M.; Jiang, S.; Li, T.; Li, C. (2018)
      © 2017 Elsevier Ltd The different catalytic behaviour of solid acid catalyst and mineral acid catalyst towards the acid-treatment of bio-oil was investigated. The hydrogen ions in the mineral acid catalyst such as sulfuric ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.