Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Effect of fracture fill on seismic attenuation and dispersion in fractured porous rocks

    193393_97213_Effect_of_fracture_fill_on_seismic_attenuation_and_dispersion_in_fractured_porous_rocks.pdf (450.8Kb)
    Access Status
    Open access
    Authors
    Kong, L.
    Gurevich, Boris
    Muller, Tobias
    Wang, Y.
    Yang, H.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kong, Liyun and Gurevich, Boris and Muller, Tobias M. and Wang, Yibo and Yang, Huizhu. 2013. Effect of fracture fill on seismic attenuation and dispersion in fractured porous rocks. Geophysical Journal International. 195 (3): pp. 1679-1688.
    Source Title
    Geophysical Journal International
    DOI
    10.1093/gji/ggt354
    ISSN
    0956-540X
    Remarks

    This article has been accepted for publication in Geophysical Journal International. © 2013 The Authors 2013. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

    URI
    http://hdl.handle.net/20.500.11937/47539
    Collection
    • Curtin Research Publications
    Abstract

    When a porous medium is permeated by open fractures, wave-induced flow between pores and fractures can cause significant attenuation and dispersion. Most studies of this phenomenon assume that pores and fractures are saturated with the same fluid. In some situations, particularly when a fluid such as water or carbon dioxide is injected into a tight hydrocarbon reservoir, fractures may be filled with a different fluid (with capillary forces preventing fluid mixing). Here we develop a model for wave propagation in a porous medium with aligned fractures where pores and fractures are filled with different fluids. The fractured medium is modelled as a periodic system of alternating layers of two types: thick porous layers representing the background, and very thin and highly compliant porous layers representing fractures. A dispersion equation for the P-wave propagating through a layered porous medium is derived using Biot's theory of wave propagation in periodically stratified poroelastic media. By taking the limit of zero thickness and zero normal stiffness of the thin layers, we obtain expressions for dispersion and attenuation of the P waves. The results show that in the low-frequency limit the elastic properties of such a medium can be described by Gassmann's equation with a composite fluid, whose bulk modulus is a harmonic (Wood) average of the moduli of the two fluids.The dispersion is relatively large when the fluid in both pores and fractures is liquid, and also when the pores are filled with a liquid but fractures are filled with a highly compressible gas. An intermediate case exists where the fluid in the pores is liquid while the fluid in the fractures has a bulk modulus between those of liquid and gas. In this intermediate case no dispersion is observed. This can be explained by observing that for uniform saturation, wave-induced compression causes flow from fractures into pores due to the high compliance of the fractures. Conversely, when pores are filled with a liquid but fractures are filled with gas, the fluid will flow from pores into fractures due to the high compressibility of gas. Thus, there exists an intermediate fracture fluid compressibility such that no flow can be induced and hence no dispersion or attenuation is observed.

    Related items

    Showing items related by title, author, creator and subject.

    • Effect of the Fracture Fill on the Dispersion and Attenuation of Elastic Waves in a Porous Rock with Aligned Fractures
      Kong, L.; Gurevich, Boris; Mϋller, Tobias; Wang, Y.; Yang, H. (2013)
      When a porous medium is permeated by open fractures, wave-induced flow between pores and fractures can cause significant attenuation and dispersion. Most studies of this phenomenon assume that pores and fractures are ...
    • Elastic wave attenuation, dispersion and anisotropy in fractured porous media
      Galvin, Robert (2007)
      Development of a hydrocarbon reservoir requires information about the type of fluid that saturates the pore space, and the permeability distribution that determines how the fluid can be extracted. The presence of fractures ...
    • Effects of fractures on seismic waves in poroelastic formations
      Brajanovski, Miroslav (2004)
      Naturally fractured reservoirs have attracted an increased interest of exploration and production geophysics in recent years. In many instances, natural fractures control the permeability of the reservoir, and hence the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.