Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Porous Ni-Fe alloys as anode support for intermediate temperature solid oxide fuel cells: I. Fabrication, redox and thermal behaviors

    Access Status
    Fulltext not available
    Authors
    Wang, X.
    Li, K.
    Jia, L.
    Zhang, Q.
    Jiang, San Ping
    Chi, B.
    Pu, J.
    Jian, L.
    Yan, D.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wang, X. and Li, K. and Jia, L. and Zhang, Q. and Jiang, S.P. and Chi, B. and Pu, J. et al. 2015. Porous Ni-Fe alloys as anode support for intermediate temperature solid oxide fuel cells: I. Fabrication, redox and thermal behaviors. Journal of Power Sources. 277: pp. 474-479.
    Source Title
    Journal of Power Sources
    DOI
    10.1016/j.jpowsour.2014.10.165
    ISSN
    0378-7753
    School
    Fuels and Energy Technology Institute
    URI
    http://hdl.handle.net/20.500.11937/47636
    Collection
    • Curtin Research Publications
    Abstract

    Porous Ni–Fe anode supports for intermediate solid oxide fuel cells are prepared by reducing the sintered NiO-(0–50 wt. %) Fe2O3 composites in H2, their microstructure, redox and thermal expansion/cycling characteristics are systematically investigated. The sintered NiO–Fe2O3 composites are consisted of NiO and NiFe2O4, and are fully reducible to porous metallic Ni–Fe alloys in H2 at temperatures between 600 and 750 °C. The porous structure contains pores in bimodal distribution with larger pores between the sintered particles and smaller ones inside the particles. The oxidation resistance of the Ni–Fe alloy anode supports at 600 and 750 °C is increased by the addition of Fe, their oxidation kinetics obeys a multistage parabolic law in the form of View the MathML source(Percentageweightgain/Specificsurfacearea) 2=kp·t, where kp is the rate constant and t the oxidation time. The dimension of the Ni–Fe anode supports is slightly changed without disintegrating their structure, and Fe addition is beneficial to the redox stability. The TEC of the Ni–Fe alloy anode supports decreases with the increase of Fe content. The anode supports containing Fe is less stable in dimension during thermal cycles due to the continuous sintering, but the dimension change after thermal cycles is within 1%.

    Related items

    Showing items related by title, author, creator and subject.

    • 3D core–shell architecture from infiltration and beneficial reactive sintering as highly efficient and thermally stable oxygen reduction electrode
      Chen, D.; Yang, G.; Ciucci, F.; Tade, Moses; Shao, Zongping (2014)
      Solid oxide fuel cells (SOFCs) as alternatives for energy conversion have the capacity to overcome low energy conversion efficiency, highly detrimental emissions from traditional fuel utilization and the limited reserves ...
    • Novel cathode-supported hollow fibers for light weight micro-tubular solid oxide fuel cells with an active cathode functional layer
      Meng, X.; Yang, N.; Gong, X.; Yin, Y.; Ma, Z.; Tan, X.; Shao, Zongping; Liu, Shaomin (2014)
      Micro-tubular SOFCs have the potential to become light-weight portable auxiliary power units for aircraft or spacecraft. In this work, a novel dual-layer ceramic hollow fiber for a cathode-supported micro-tubular solid ...
    • Nickel-Iron Alloy Nanoparticle-Decorated K2NiF4-Type Oxide as an Efficient and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells
      Wu, N.; Wang, W.; Zhong, Y.; Yang, G.; Qu, J.; Shao, Zongping (2017)
      We report a new nickel-iron alloy nanoparticle-decorated LaSrFe0.75Ni0.25O4 K2NiF4-type oxide with Ruddlesden-Popper structure (RP-LSFN), which performed as a high-performance sulfur-resistant anode prepared by using an ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.