Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Comprehensive overexpression analysis of cyclic-di-GMP signalling proteins in the phytopathogen Pectobacterium atrosepticum reveals diverse effects on motility and virulence phenotypes

    Access Status
    Open access via publisher
    Authors
    Tan, H.
    West, J.
    Ramsay, Joshua
    Monson, R.
    Griffin, J.
    Toth, I.
    Salmond, G.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Tan, H. and West, J. and Ramsay, J. and Monson, R. and Griffin, J. and Toth, I. and Salmond, G. 2014. Comprehensive overexpression analysis of cyclic-di-GMP signalling proteins in the phytopathogen Pectobacterium atrosepticum reveals diverse effects on motility and virulence phenotypes. Microbiology. 160 (7): pp. 1427-1439.
    Source Title
    Microbiology
    DOI
    10.1099/mic.0.076828-0
    ISSN
    1350-0872
    School
    School of Biomedical Sciences
    URI
    http://hdl.handle.net/20.500.11937/48106
    Collection
    • Curtin Research Publications
    Abstract

    Bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous bacterial signalling molecule produced by diguanylate cyclases of the GGDEF-domain family. Elevated c-di-GMP levels or increased GGDEF protein expression is frequently associated with the onset of sessility and biofilm formation in numerous bacterial species. Conversely, phosphodiesterase-dependent diminution of c-di-GMP levels by EAL- and HD-GYP-domain proteins is often accompanied by increased motility and virulence. In this study, we individually overexpressed 23 predicted GGDEF, EAL or HD-GYP-domain proteins encoded by the phytopathogen Pectobacterium atrosepticum strain SCRI1043. MS-based detection of c-di-GMP and 5′-phosphoguanylyl-(3′-5′)-guanosine in these strains revealed that overexpression of most genes promoted modest 1–10-fold changes in cellular levels of c-di-GMP, with the exception of the GGDEF-domain proteins ECA0659 and ECA3374, which induced 1290- and 7660-fold increases, respectively.Overexpression of most EAL domain proteins increased motility, while overexpression of most GGDEF domain proteins reduced motility and increased poly-β-1,6-N-acetyl-glucosamine-dependent flocculation. In contrast to domain-based predictions, overexpression of the EAL protein ECA3549 or the HD-GYP protein ECA3548 increased c-di-GMP concentrations and reduced motility. Most overexpression constructs altered the levels of secreted cellulases, pectinases and proteases, confirming c-di-GMP regulation of virulence in Pe. atrosepticum. However, there was no apparent correlation between virulence-factor induction and the domain class expressed or cellular c-di-GMP levels, suggesting that regulation was in response to specific effectors within the network, rather than total c-di-GMP concentration. Finally, we demonstrated that the cellular localization patterns vary considerably for GGDEF/EAL/HD-GYP proteins, indicating it is a likely factor restricting specific interactions within the c-di-GMP network.

    Related items

    Showing items related by title, author, creator and subject.

    • The mitochondrial outer membrane AAA ATPase AtOM66 affects cell death and pathogen resistance in Arabidopsis thaliana
      Zhang, B.; Van Aken, O.; Thatcher, L.; De Clercq, I.; Duncan, O.; Law, S.; Murcha, M.; Van Der Merwe, M.; Seifi, H.; Carrie, C.; Cazzonelli, C.; Radomiljac, J.; Höfte, M.; Singh, Karambir; Van Breusegem, F.; Whelan, J. (2014)
      One of the most stress-responsive genes encoding a mitochondrial protein in Arabidopsis (At3g50930) has been annotated as AtBCS1 (cytochrome bc1 synthase 1), but was previously functionally uncharacterised. Here, we show ...
    • The aliphatic amidase AmiE is involved in regulation of Pseudomonas aeruginosa virulence
      Clamens, T.; Rosay, T.; Crépin, A.; Grandjean, T.; Kentache, T.; Hardouin, J.; Bortolotti, P.; Neidig, A.; Mooij, M.; Hillion, M.; Vieillard, J.; Cosette, P.; Overhage, J.; O'Gara, Fergal; Bouffartigues, E.; Dufour, A.; Chevalier, S.; Guery, B.; Cornelis, P.; Feuilloley, M.; Lesouhaitier, O. (2017)
      © The Author(s) 2017.We have previously shown that the eukaryotic C-type natriuretic peptide hormone (CNP) regulates Pseudomonas aeruginosa virulence and biofilm formation after binding on the AmiC sensor, triggering the ...
    • The small GTPase Rac1 is a novel binding partner of Bcl-2 and stabilizes its antiapoptotic activity
      Velaithan, R.; Kang, J.; Hirpara, J.; Loh, T.; Goh, B.; Le Bras, M.; Brenner, C.; Clement, M.; Pervaiz, Shazib (2011)
      The small GTPase Rac1 is involved in the activation of the reduced NAD phosphate oxidase complex resulting in superoxide production.We recently showed that Bcl-2 overexpression inhibited apoptosis in leukemia cells by ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.