A synthesis method for cobalt doped carbon aerogels with high surface area and their hydrogen storage properties
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
Remarks
The link to the journal’s home page is: http://www.elsevier.com/wps/find/journaldescription.cws_home/485/description#description. Copyright © 2010 Elsevier B.V. All rights reserved
Collection
Abstract
Carbon aerogels doped with nanoscaled Co particles were prepared by first coating activated carbon aerogels using a wet-thin layer coating process. The resulting metal-doped carbon aerogels had a higher surface area (1667 m2 g-1) and larger micropore volume (0.6 cm3 g-1) than metal-doped carbon aerogels synthesised using other methods suggesting their usefulness in catalytic applications. The hydrogen adsorption behaviour of cobalt doped carbon aerogel was evaluated, displaying a high w4.38 wt.% H2 uptake under 4.6 MPa at -196 C. The hydrogen uptake capacity with respect to unit surface area was greater than for pure carbon aerogel and resulted in 1.3 H2 (wt. %) per 500 m2 g-1. However, the total hydrogen uptake was slightly reduced as compared to pure carbon aerogel due to a small reduction in surface area associated with cobalt doping. The improved adsorption per unit surface area suggests that there is a stronger interaction between the hydrogen molecules and the cobalt doped carbon aerogel than for pure carbon aerogel.
Related items
Showing items related by title, author, creator and subject.
-
Tian, Hu-Yong; Buckley, Craig; Paskevicius, Mark; Sheppard, Drew (2012)Hydrogen storage issues have been universally investigated in order to satisfy the goals for a hydrogen economy. Carbon aerogels are regarded as one of the most promising candidates for hydrogen storage at cryogenic ...
-
Javadian, P.; Sheppard, Drew; Buckley, Craig; Jensen, T. (2015)In this study a eutectic melting composite of 0.62LiBH4-0.38NaBH4 has been infiltrated in two nanoporous resorcinol formaldehyde carbon aerogel scaffolds with similar pore sizes (37 and 38 nm) but different BET surface ...
-
Tian, Hu-Yong; Buckley, Craig; Mule, S.; Paskevicius, Mark; Dhal, Bipin (2008)Organic aerogels are prepared by the sol–gel method from polymerization of resorcinol with furfural. These aerogels are further carbonized in nitrogen in order to obtain their corresponding carbon aerogels (CA); a sample ...