Show simple item record

dc.contributor.authorRistic, B.
dc.contributor.authorVo, Ba-Ngu
dc.date.accessioned2017-01-30T15:38:31Z
dc.date.available2017-01-30T15:38:31Z
dc.date.created2014-07-02T20:00:25Z
dc.date.issued2010
dc.identifier.citationRistic, B. and Vo, B. 2010. Sensor Control for Multi-Object State-Space Estimation Using Random Finite Sets. Automatica. 46 (11): pp. 1812-1818.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/48253
dc.identifier.doi10.1016/j.automatica.2010.06.045
dc.description.abstract

The problem addressed in this paper is information theoretic sensor control for recursive Bayesian multi-object state-space estimation using random finite sets. The proposed algorithm is formulated in the framework of partially observed Markov decision processes where the reward function associated with different sensor actions is computed via the Renyi or alpha divergence between the multi-object prior and the multi-object posterior densities. The proposed algorithm in implemented via the sequential Monte Carlo method. The paper then presents a case study where the problem is to localise an unknown number of sources using a controllable moving sensor which provides range-only detections. Four sensor control reward functions are compared in the study and the proposed scheme is found to perform the best.

dc.publisherPergamon
dc.subjectInformation measure
dc.subjectRandom finite sets
dc.subjectParticle filter
dc.subjectSensor management
dc.subjectSequential Monte Carlo estimation
dc.subjectBayesian estimation
dc.titleSensor Control for Multi-Object State-Space Estimation Using Random Finite Sets
dc.typeJournal Article
dcterms.source.volume46
dcterms.source.number11
dcterms.source.startPage1812
dcterms.source.endPage1818
dcterms.source.issn0005-1098
dcterms.source.titleAutomatica
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record